首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain
Authors:Sahara N  Maeda S  Yoshiike Y  Mizoroki T  Yamashita S  Murayama M  Park J-M  Saito Y  Murayama S  Takashima A
Affiliation:Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan. saharanaruhiko@brain.riken.jp
Abstract:Intracellular accumulation of filamentous tau proteins is a defining feature of neurodegenerative diseases termed tauopathies. The pathogenesis of tauopathies remains largely unknown. Molecular chaperones such as heat shock proteins (HSPs), however, have been implicated in tauopathies as well as in other neurodegenerative diseases characterized by the accumulation of insoluble protein aggregates. To search for in vivo evidence of chaperone-related tau protein metabolism, we analyzed human brains with varying degrees of neurofibrillary tangle (NFT) pathology, as defined by Braak NFT staging. Quantitative analysis of soluble protein levels revealed significant positive correlations between tau and Hsp90, Hsp40, Hsp27, alpha-crystallin, and CHIP. An inverse correlation was observed between the levels of HSPs in each specimen and the levels of granular tau oligomers, the latter of which were isolated from brain as intermediates of tau filaments. We speculate that HSPs function as regulators of soluble tau protein levels, and, once the capacity of this chaperone system is saturated, granular tau oligomers form virtually unabated. This is expressed pathologically as an early sign of NFT formation. The molecular basis of chaperone-mediated protection against neurodegeneration might lead to the development of therapeutics for tauopathies. (c) 2007 Wiley-Liss, Inc.
Keywords:tau  oligomer  heat shock protein  molec‐ular chaperone  Braak stage
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号