首页 | 本学科首页   官方微博 | 高级检索  
检索        


Proteome-wide analysis of HIV-specific naive and memory CD4+ T cells in unexposed blood donors
Authors:Suzanne L Campion  Tess M Brodie  William Fischer  Bette T Korber  Astrea Rossetti  Nilu Goonetilleke  Andrew J McMichael  Federica Sallusto
Institution:1.Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, England, UK;2.Institute for Research in Biomedicine (IRB), 6-CH-6500 Bellinzona, Switzerland;3.Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545;4.Department of Microbiology & Immunology, and 5.Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
Abstract:The preexisting HIV-1–specific T cell repertoire must influence both the immunodominance of T cells after infection and immunogenicity of vaccines. We directly compared two methods for measuring the preexisting CD4+ T cell repertoire in healthy HIV-1–negative volunteers, the HLA-peptide tetramer enrichment and T cell library technique, and show high concordance (r = 0.989). Using the library technique, we examined whether naive, central memory, and/or effector memory CD4+ T cells specific for overlapping peptides spanning the entire HIV-1 proteome were detectable in 10 HLA diverse, HIV-1–unexposed, seronegative donors. HIV-1–specific cells were detected in all donors at a mean of 55 cells/million naive cells and 38.9 and 34.1 cells/million in central and effector memory subsets. Remarkably, peptide mapping showed most epitopes recognized by naive (88%) and memory (56%) CD4+ T cells had been previously reported in natural HIV-1 infection. Furthermore, 83% of epitopes identified in preexisting memory subsets shared epitope length matches (8–12 amino acids) with human microbiome proteins, suggestive of a possible cross-reactive mechanism. These results underline the power of a proteome-wide analysis of peptide recognition by human T cells for the identification of dominant antigens and provide a baseline for optimizing HIV-1–specific helper cell responses by vaccination.Only one candidate HIV vaccine, a canarypox vectored gp120 with a protein boost, has shown any efficacy (Rerks-Ngarm et al., 2009). The limited protection correlated with induction of nonneutralizing antibodies to the VI/V2 region of the virus Envelope protein (Env; Rerks-Ngarm et al., 2009; Haynes et al., 2012). This modest success has stimulated efforts to design vaccines that generate more efficient neutralizing antibodies, together with potent CD4+ T cell responses capable of providing help to B cells and cytotoxic T cells (Burton et al., 2012). Understanding how the magnitude and specificity of these helper T cells can be optimized will be critical to the design of an effective vaccine.Primary immune responses are probably influenced strongly by the preexisting repertoire of B and T cells. However, characterization and quantification of these repertoires is difficult due to the extremely low number of circulating naive precursor cells (Jenkins et al., 2001; Su et al., 2013). Previous studies of naive CD4+ T cell repertoires in humans and mice have relied on magnetic beads to enrich MHC tetramer binding cells (Moon et al., 2007; Kwok et al., 2012; Su et al., 2013). However, although this approach gives precise information on responses to particular MHC-peptide epitopes, it does not measure the total repertoire and misses previously unknown epitopes. An alternative T cell library technique requires no prior knowledge of donor HLA type or epitope specificity (Geiger et al., 2009). The method presorts circulating T cells into naive and memory subsets which are seeded at limiting dilution before polyclonal expansion in the presence of PHA, allogeneic feeder cells, and IL-2. Individual cultures are then screened for proliferative responses to a protein or series of peptides representing the pathogen of interest (Geiger et al., 2009). Combined with epitope mapping and the Poisson distribution, the T cell library technique can provide quantitative data on the specificity of the entire preexisting naive and memory repertoire.The existence of HIV-1–specific memory cells in seronegative donors was originally suggested by studies of highly exposed HIV-1 seronegative (HESN) donors. It has been shown that 25–61% of HESNs have demonstrable HIV-1–specific memory cells, probably primed by exposure to the virus. Surprisingly, HIV-1–specific CD4+ T cells were also detected in 24–44% of unexposed donors (Ritchie et al., 2011), although it was not clear whether the latter came from cross-reactive memory T cells or naive T cells primed in vitro. More recently, the existence of low frequency (1–10/million) memory CD4+ T cells, specific for a known HIV-1 Gag epitope, was demonstrated by HLA DR4 tetramers in 50% of HIV-1 unexposed HLA DR4+ adults (Su et al., 2013), but it was not clear how generalizable the HIV-1 result was beyond the single epitope–HLA DR4 combination.The present study first validates the library technique by direct comparison with the tetramer enrichment method for measuring precursor T cell frequencies. We then use the T cell library technique to provide the first proteome-wide analysis of the frequencies and specificities of preexposure HIV-1–specific naive and memory CD4+ T cells in a HLA diverse population of HIV-1 unexposed donors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号