Abstract: | Natural sheep surfactant, rabbit surfactant, human surfactant, and surfactant TA were compared for in vitro surface properties and for responses of preterm lambs to treatment. Equivalent amounts of sheep, rabbit, and human surfactants were needed to lower the surface tension to less than 10 dynes/cm, whereas four times less surfactant TA similarly lowered the surface tension. Surface-spreading rates were similar for the surfactants. The surface adsorption of the batch of human surfactant tested was much slower than was adsorption of the other surfactants. Ventilation was significantly improved in all surfactant-treated lambs relative to the control lambs, indicating the general efficacy of the surfactant treatments. Overall, surfactant TA had the best in vitro characteristics, yet the preterm lambs treated at birth with surfactant TA had lower PO2 values and higher ventilatory requirements than did the sheep surfactant-treated lambs. The in vivo responses to rabbit surfactant were intermediate between the responses to sheep surfactant and to surfactant TA. Human surfactant resulted in the least effective clinical response. More of the phosphatidylcholine associated with human surfactant and surfactant TA was lost from the alveoli and lung tissue after four hours of ventilation than was lost from sheep or rabbit surfactant-treated lambs. More intravascular radiolabeled albumin leaked into the alveoli of the surfactant TA-treated lambs than sheep or rabbit surfactant-treated lambs. The four surfactants also had different sensitivities to the effects on minimum surface tensions of the soluble proteins present in alveolar washes. The study demonstrates that the range of clinical responses was not predictable based on the in vitro surface properties that we measured.(ABSTRACT TRUNCATED AT 250 WORDS) |