首页 | 本学科首页   官方微博 | 高级检索  
     


Dosimetric verification of intensity modulated beams produced with dynamic multileaf collimation using an electronic portal imaging device
Authors:Pasma K L  Dirkx M L  Kroonwijk M  Visser A G  Heijmen B J
Affiliation:Department of Radiotherapy, Daniel den Hoed Cancer Center/University Hospital Rotterdam, The Netherlands. pasma@kfih.azr.nl
Abstract:Dose distributions can often be significantly improved by modulating the two-dimensional intensity profile of the individual x-ray beams. One technique for delivering intensity modulated beams is dynamic multileaf collimation (DMLC). However, DMLC is complex and requires extensive quality assurance. In this paper a new method is presented for a pretreatment dosimetric verification of these intensity modulated beams utilizing a charge-coupled device camera based fluoroscopic electronic portal imaging device (EPID). In the absence of the patient, EPID images are acquired for all beams produced with DMLC. These images are then converted into two-dimensional dose distributions and compared with the calculated dose distributions. The calculations are performed with a pencil beam algorithm as implemented in a commercially available treatment planning system using the same absolute beam fluence profiles as used for calculation of the patient dose distribution. The method allows an overall verification of (i) the leaf trajectory calculation (including the models to incorporate collimator scatter and leaf transmission), (ii) the correct transfer of the leaf sequencing file to the treatment machine, and (iii) the mechanical and dosimetrical performance of the treatment unit. The method was tested for intensity modulated 10 and 25 MV photon beams; both model cases and real clinical cases were studied. Dose profiles measured with the EPID were also compared with ionization chamber measurements. In all cases both predictions and EPID measurements and EPID and ionization chamber measurements agreed within 2% (1 sigma). The study has demonstrated that the proposed method allows fast and accurate pretreatment verification of DMLC.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号