首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple antibiotic-resistance mechanisms including a novel combination of extended-spectrum beta-lactamases in a Klebsiella pneumoniae clinical strain isolated in Argentina
Authors:Melano Roberto  Corso Alejandra  Petroni Alejandro  Centrón Daniela  Orman Betina  Pereyra Adriana  Moreno Noemí  Galas Marcelo
Affiliation:Servicio Antimicrobianos, Dpto. Bacteriología, INEI-ANLIS Dr Carlos G. Malbrán, Av. Velez Sársfield 563 (1281), Buenos Aires, Argentina.
Abstract:Klebsiella pneumoniae M1803, isolated from a paediatric patient with chronic urinary infection, presented nine antimicrobial resistance mechanisms harboured on two conjugative megaplasmids, in addition to the chromosomally mediated SHV-1 beta-lactamase. These nine antimicrobial resistance mechanisms comprised two extended-spectrum beta-lactamases (ESBLs) (PER-2 and CTX-M-2), TEM-1-like, OXA-9-like, AAC(3)-IIa, AAC(6')-Ib, ANT(3")-Ia and resistance determinants to tetracycline and chloramphenicol. During fluoroquinolone treatment, a variant derived from M1803 (named M1826) was selected, with an overall increase of MICs, in particular of cefoxitin and carbapenems. No enzymic activity against these latter drugs was found. Mutations in the region analogous to the quinolone resistance-determining region were not found. Strain M1826 was deficient in OmpK35/36 expression, which produced the decrease in the susceptibility to cefoxitin, carbapenems and fluoroquinolones. The blaCTX-M-2 gene was located in an unusual class 1 integron, which includes Orf513, as occurred in the recently described In35. In addition, Tn3 and Tn1331 were detected in both K. pneumoniae isolates. This is the first report of in vivo selection of an OmpK35/36 deficiency in a K. pneumoniae strain that produced a novel combination of two ESBLs (CTX-M-2 and PER-2) during fluoroquinolone treatment in a paediatric patient with chronic urinary infection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号