首页 | 本学科首页   官方微博 | 高级检索  
     


Improved hypothesis testing for coefficients in generalized estimating equations with small samples of clusters
Authors:McCaffrey Daniel F  Bell Robert M
Affiliation:The RAND Corporation, Pittsburgh, PA 15213, USA. daniel_mccaffrey@rand.org
Abstract:The sandwich standard error estimator is commonly used for making inferences about parameter estimates found as solutions to generalized estimating equations (GEE) for clustered data. The sandwich tends to underestimate the variability in the parameter estimates when the number of clusters is small, and reference distributions commonly used for hypothesis testing poorly approximate the distribution of Wald test statistics. Consequently, tests have greater than nominal type I error rates. We propose tests that use bias-reduced linearization, BRL, to adjust the sandwich estimator and Satterthwaite or saddlepoint approximations for the reference distribution of resulting Wald t-tests. We conducted a large simulation study of tests using a variety of estimators (traditional sandwich, BRL, Mancl and DeRouen's BC estimator, and a modification of an estimator proposed by Kott) and approximations to reference distributions under diverse settings that varied the distribution of the explanatory variables, the values of coefficients, and the degree of intra-cluster correlation (ICC). Our new method generally worked well, providing accurate estimates of the variability of fitted coefficients and tests with near-nominal type I error rates when the ICC is small. Our method works less well when the ICC is large, but it continues to out-perform the traditional sandwich and other alternatives.
Keywords:logistic regression  generalized linear models  linearization  sandwich estimator  saddlepoint approximation  complex samples
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号