首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of Dibutyryl Cyclic AMP on Na+, K+-ATPase Activity and Intracellular Na+ and K+ in Primary Cultures of Astrocytes from DBA and C57 Mice
Authors:Jun Li  Sien-Yao Chow
Institution:Division of Neuropharmacology and Epileptology, Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah, U.S.A.
Abstract:Summary: Effects of chronic treatment of dibutyryl cyclic AMP (db-cyclic AMP) on Na+, K+-ATPase activity in cell homogenates and intracellular N a f and K+ contents (Na+)i and (K+)i] were studied in primary cultures of astrocytes derived from cerebral cortex of neonatal audiogenic seizure-susceptible DBA and audiogenic seizure-resistant C57 mice. Na+, K+-ATPase activity in cell homogenates was greater and (Na+)i was less in DBA astrocytes than in C57 astrocytes. There was no difference in (K+)i between astrocytes from DBA and C57 mice. Addition of db-cyclic AMP to the medium from day 14 to day 21 in culture (final concentration 0.25 mM) increased Na+, K+-ATPase activity in cell homogenates and decreased (Na+)i, but had no significant effect on (K+)i in astrocytes from either DBA or C57 mice. Chronic treatment with db-cyclic AMP altered cell growth. Protein and DNA content of cultured astrocytes from both DBA and C57 mice was decreased. DNA was more affected than protein. Modifying K+ and Na+ concentration in medium altered Na+, K+-ATPase activity in cell homogenates as well as (Na+)i and (K+)i in cultured astrocytes of both DBA and C57 mice. Changes in (Na+)i and (K+)i at different K+ concentrations in medium paralleled those in Na+, K+-ATPase activity in cell homogenates. Results indicate that the ability to transport Na+ across the cell membrane and the response of Na+, K+-ATPase to db-cyclic AMP and to the changes in K + in medium of cultured astrocytes from audiogenic seizure-susceptible DBA mice are sufficient.
Keywords:Astrocytes  Neurologic models  DBA mice  C57 mice  db-Cyclic AMP  ATPase  Cations  Sodium  Potassium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号