首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro activities of piperacillin against beta-lactamase-negative ampicillin-resistant Haemophilus influenzae
Authors:Morikawa Yoshiro  Kitazato Miyoshi  Mitsuyama Junichi  Mizunaga Shingo  Minami Shinzaburo  Watanabe Yasuo
Affiliation:Yodogawa Christian Hospital, Higashiyodogawa-ku, Osaka, Japan.
Abstract:The in vitro activities of piperacillin (PIP) against beta-lactamase-negative ampicillin (AMP)-resistant (BLNAR) Haemophilus influenzae were compared with those of cefotaxime (CTX) and ceftriaxone (CRO), and the potency of PIP as therapy for meningitis caused by BLNAR is also discussed. PIP showed good activity (MIC at which 90% of strains are inhibited, 0.25 micro g/ml) against 69 BLNAR strains, and its activity was comparable to that of CRO and superior to that of CTX. No significant correlation was observed between the MICs of PIP and CTX or CRO or AMP, whereas a high correlation was observed between the MICs of CTX and CRO. In the killing study, PIP showed potent bactericidal activity compared with those of CTX and CRO. By microscopic examination, PIP caused the formation of a spindle and short filamentous cells with bulges and induced cell lysis in BLNAR strains, while treatment with CTX and CRO resulted in the formation of large, spherical cells without any obvious lysis. The affinity of Bocillin FL, a fluorescent penicillin used for determination of the 50% inhibitory concentration (IC(50)s) for penicillin-binding proteins (PBPs), to PBPs 3a and 3b of BLNAR strains was drastically decreased compared with that to an AMP-susceptible strain (ATCC 33391). In the case of the BLNAR strains, the IC(50)s for PBPs 1a, 1b, and 2 were similar to those for the PBPs of ATCC 33391. Since the affinity of binding to PBPs 3a and 3b of the BLNAR strains decreased drastically, the second targets among the PBPs were PBP 2 for PIP, PBP1 (1a and 1b) for CTX and CRO. In conclusion, PIP showed excellent activities against BLNAR strains in a manner different from those of cephem antibiotics, suggesting that it could be a candidate therapeutic agent for the treatment of meningitis caused by BLNAR strains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号