首页 | 本学科首页   官方微博 | 高级检索  
检索        


Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat
Authors:H Noto  JR Roppolo  WD Steers  WC de Groat
Institution:Department of Pharmacology Center for Neuroscience, University of Pittsburgh School of Medicine, PA 15261.
Abstract:Electrophysiological techniques were used to examine the organization of the spinobulbospinal micturition reflex pathway in the rat. Electrical stimulation of afferent axons in the pelvic nerve evoked a long latency (136 +/- 41 ms) response on bladder postganglionic nerves, whereas stimulation in the dorsal pontine tegmentum elicited shorter latency firing (72 +/- 25 ms) on these nerves. Transection of the pelvic nerve eliminated these responses. Firing on the bladder postganglionic nerves was evoked by stimulation in a relatively limited area of the pons within and close to the laterodorsal tegmental nucleus (LDT) and adjacent ventral periaqueductal gray. Stimulation at sites ventral to this excitatory area inhibited at latencies of 107 +/- 11 ms the asynchronous firing on the bladder postganglionic nerves elicited by bladder distension. Electrical stimulation of afferents in the pelvic nerve evoked short latency (13 +/- 3 ms) negative field potentials in the dorsal part of the periaqueductal gray as well as long latency (42 +/- 7 ms) field potentials in and adjacent to the LDT. The responses were not altered by neuromuscular blockade. Similar responses were elicited by stimulation of afferent axons in the bladder nerves. The sum of the latencies of the ascending and descending pathways between the LDT and the pelvic nerve (i.e. 72 ms plus 42 ms = 114 ms) is comparable although somewhat shorter (22 ms) than the latency of the entire micturition reflex. These results provide further evidence that the micturition reflex in the rat is mediated by a spinobulbospinal pathway which passes through the dorsal pontine tegmentum, and that neurons in the periaqueductal gray as well as the LDT may play as important role in the regulation of the micturition.
Keywords:Laterodorsal tegmental nucleus  Periaqueductal gray  Bladder  Pontine micturition center  Electrical stimulation  Evoked potential  Bladder postganglionic nerve
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号