首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dengue hemorrhagic fever-associated immunomediators induced via maturation of dengue virus nonstructural 4B protein in monocytes modulate endothelial cell adhesion molecules and human microvascular endothelial cells permeability
Authors:Kelley James F  Kaufusi Pakieli H  Nerurkar Vivek R
Institution:
  • Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
  • Abstract:We previously demonstrated that dengue virus (DENV) nonstructural 4B protein (NS4B) induced dengue hemorrhagic fever (DHF)-associated immunomediators in THP-1 monocytes. Moreover, cleavage of NS4AB polyprotein by the NS2B3 protease, significantly increased immunomediator production to levels found after DENV infection. In this report using primary human microvascular endothelial cells (HMVEC) transwell permeability model and HMVEC monolayer, we demonstrate that the immunomediators secreted in the supernatants of DENV-infected monocytes increase HMVEC permeability and expression of ICAM-1, VCAM-1 and E-selectin. Moreover, maturation of NS4B via cleavage of 2KNS4B is sufficient to induce immunomediators that cause HMVEC phenotypic changes, which appear to be synergistically induced by TNFα and IL-8. These data suggest that therapies targeting the maturation steps of NS4B, particularly 2KNS4B processing, may reduce overall DHF-associated immunomediator levels, thereby reducing DHF-associated morbidity and mortality. Alternatively, TNFα inhibitors may be a valid intervention strategy during the later stages of infection to prevent DHF progression.
    Keywords:Dengue virus  DENV  Flavivirus  Chemokines and cytokines  Nonstructural 2KNS4B protein  THP-1 monocytes  Human microvascular endothelial cells (HMVEC)  Adhesion molecules  ICAM-1  VCAM-1  E-selectin  Transwell permeability model  TEER  FITC-dextran
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号