首页 | 本学科首页   官方微博 | 高级检索  
     


Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency
Authors:Gao Yu  Xu Zhenghong  Chen Shangwei  Gu Wangwen  Chen Lingli  Li Yaping
Affiliation:Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Abstract:Chitosan (Cs) is a natural cationic polysaccharide that has shown potential as non-viral vector for gene delivery because of its biocompatibility and low toxicity. However, chitosan used for gene delivery is limited due to its poor water solubility and low transfection efficiency. The purpose of this work was to prepare Arginine-chitosan (Arg-Cs)/DNA self-assemble nanoparticles (ACSNs), and determine their in vitro characteristics and transfection efficiency against HEK 293 and COS-7 cells. Our experimental results showed that the particle size and zeta potential of ACSNs prepared with different N/P ratios were 200-400nm and 0.23-12.25mV, respectively. The in vitro transfection efficiency of ACSNs showed dependence on pH of transfection medium, and the highest expression efficiency was obtained at pH 7.2. The transfection efficiency increased with the ratio of chitosan-amine/DNA phosphate (N/P ratio) from 1 to 5, and reached the highest level with the N/P ratio 5. Effect of plasmid dosage on the transfection efficiency showed the highest transfection efficiency was obtained at 4microg/well for HEK 293 cells and 6microg/well for COS-7 cells. The transfection efficiency of ACSNs was much higher than that of Cs/DNA self-assemble nanoparticles (CSNs). The average cell viability of ACSNs was over 90%. These results suggested that ACSNs could be a safe and effective non-viral vector for gene delivery.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号