Rat hepatocarcinogenesis induced by N-nitrosodiethylamine and N-nitrosomorpholine continuously administered at low doses. From basophilic areas of hepatocytes to hepatocellular tumors. |
| |
Authors: | C. Cortinovis F. Klimek E. Nogueira |
| |
Affiliation: | Institute of Experimental Pathology, German Cancer Research Center, Heidelberg. |
| |
Abstract: | The development of hepatocellular tumors was investigated with histological, histochemical, and morphometrical methods in male Sprague-Dawley rats continuously administered N-nitrosodiethylamine (DEN) or N-nitrosomorpholine (NNM) in the drinking water at low doses (0.5 mg DEN/100 ml; 1 mg NNM/100 ml). Groups of control, DEN-, and NNM-treated rats were investigated at 5-week intervals. Similar results were obtained in DEN- and NNM-treated rats. Two types of areas composed of basophilic or glycogenotic hepatocytes were observed preceding the appearance of hepatocellular adenomas and carcinomas. Besides their cytologic differences, the basophilic and glycogenotic areas induced displayed distinct histochemical features. Both types of areas were detected simultaneously and increased in parallel with time to a similar incidence, but basophilic areas reached larger sizes than the glycogenotic ones. Furthermore, each type of area, which clustered around and along efferent veins, was differently linked to tumorigenesis. Basophilic areas frequently developed into basophilic adenomas and trabecular carcinomas through a characteristic sequence. Early basophilic areas consisted of hepatocytes with lamellar cytoplasmic hyperbasophilia and exhibited the normal laminar liver structure. With time, an increasing number of basophilic areas also contained hepatocytes with powdered diffuse hyperbasophilia, which frequently were arranged in thick trabeculae, showed abundant mitotic figures, and invaded efferent veins. Neither such signs of malignancy nor conversion into basophilic areas or tumors could be established for areas of clear and acidophilic glycogenotic hepatocytes. However, a few small glycogenotic adenomas probably developed from glycogenotic areas. Our data thus underline the central role of basophilic areas for hepatocarcinogenesis. Moreover, taking into account the data from other experiments, it seems likely that although glycogenotic areas may be associated with the application of some carcinogens at high doses, they are not obligatory precursors of hepatocellular tumors. |
| |
Keywords: | |
|
|