首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mechanisms of zolpidem-induced long QT syndrome: acute inhibition of recombinant hERG K+ channels and action potential prolongation in human cardiomyocytes derived from induced pluripotent stem cells
Authors:J Jehle  E Ficker  X Wan  I Deschenes  J Kisselbach  F Wiedmann  I Staudacher  C Schmidt  PA Schweizer  R Becker  HA Katus  D Thomas
Institution:1.Department of Cardiology, Medical University Hospital, Heidelberg, Heidelberg, Germany;2.Rammelkamp Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH, USA
Abstract:

Background and Purpose

Zolpidem, a short-acting hypnotic drug prescribed to treat insomnia, has been clinically associated with acquired long QT syndrome (LQTS) and torsade de pointes (TdP) tachyarrhythmia. LQTS is primarily attributed to reduction of cardiac human ether-a-go-go-related gene (hERG)/IKr currents. We hypothesized that zolpidem prolongs the cardiac action potential through inhibition of hERG K+ channels.

Experimental Approach

Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record hERG currents from Xenopus oocytes and from HEK 293 cells. In addition, hERG protein trafficking was evaluated in HEK 293 cells by Western blot analysis, and action potential duration (APD) was assessed in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes.

Key Results

Zolpidem caused acute hERG channel blockade in oocytes (IC50 = 61.5 μM) and in HEK 293 cells (IC50 = 65.5 μM). Mutation of residues Y652 and F656 attenuated hERG inhibition, suggesting drug binding to a receptor site inside the channel pore. Channels were blocked in open and inactivated states in a voltage- and frequency-independent manner. Zolpidem accelerated hERG channel inactivation but did not affect IV relationships of steady-state activation and inactivation. In contrast to the majority of hERG inhibitors, hERG cell surface trafficking was not impaired by zolpidem. Finally, acute zolpidem exposure resulted in APD prolongation in hiPSC-derived cardiomyocytes.

Conclusions and Implications

Zolpidem inhibits cardiac hERG K+ channels. Despite a relatively low affinity of zolpidem to hERG channels, APD prolongation may lead to acquired LQTS and TdP in cases of reduced repolarization reserve or zolpidem overdose.
Keywords:action potential  hERG K+ channel  long QT syndrome  torsade de pointes  zolpidem
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号