首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sequence Diversity of pfmdr1 and Sequence Conserve of pldh in Plasmodium falciparum from Indonesia: Its implications on Designing a Novel Antimalarial Drug with Less Prone to Resistance
Authors:Muhamad Ali  Tetrawindu A Hidayatullah  Zulfikar Alimuddin  Yunita Sabrina
Institution:1.Laboratory of Microbiology and Biotechnology, Faculty of Animal Sciences, Mataram University, Mataram, Indonesia;2.Laboratory of Microbiology Faculty of Medical, Mataram University, Mataram, Indonesia;3.Faculty of Animal Science, Nahdathul Wathan University, Mataram, Indonesia
Abstract:

Background

pfmdr1 and its variants are molecular marker which are responsible for antibiotics resistance in Plasmodium falciparum, a parasitic carrier for malaria disease. A novel strategy to treat malaria disease is by disrupting parasite lactate dehydrogenase (pLDH), a crucial enzyme for Plasmodium survival during their erythrocytic stages. This research was aimed to investigate and characterize the pfmdr1 and pldh genes of P. falciparum isolated from Nusa Tenggara Indonesia.

Methods

Genomic DNA of P.falciparum was isolated from malaria patients in Nusa Tenggara Indonesia. pfmdr1 was amplified using nested PCR and genotyped using Restriction Fragment Length Polymorphism (RFLP). pldh was amplified, sequenced, and analyzed using NCBI public domain databases and alignment using Clustal W ver. 1.83.

Results

Genotyping of the pfmdr1 revealed that sequence diversity was extremely high among isolates. However, a sequence analysis of pldh indicated that open reading frame of 316 amino acids of the gene showing 100% homology to the P. falciparum 3D7 reference pldh (GeneBank: XM_001349953.1).

Conclusion

This is the first report which confirms the heterologous of pfmdr1 and the homologous sequences of P.falciparum pldh isolated from Nusa Tenggara Islands of Indonesia, indicating that the chloroquine could not be used effectively as antimalarial target in the region and the pLDH-targeted antimalarial compound would have higher chance to be successful than using chloroquine for curbing malaria worldwide.
Keywords:Malaria  Plasmodium falciparum  Drug resistance gene  pfmdr1  pldh  Indonesia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号