首页 | 本学科首页   官方微博 | 高级检索  
检索        


Microtopographical effects of natural scaffolding on cardiomyocyte function and arrhythmogenesis
Authors:U Shah  H Bien  E Entcheva
Institution:1. Department of Physical Therapy and Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL;2. Department of Physical Therapy, Leonard M. Miller School of Medicine, University of Miami, Miami, FL;3. Cardiopulmonary Physiotherapy Laboratory; Federal University of São Carlos, São Paulo, Brazil;4. Division of Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA;1. Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada;2. Manitoba Institute of Child Health, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
Abstract:A natural myocardial patch for heart regeneration derived from porcine urinary bladder matrix (UBM) was previously reported to outperform synthetic materials (Dacron and expanded polytetrafluoroethylene (ePTFE)) used in current surgical treatments. UBM, an extracellular matrix prepared from urinary bladder, has intricate three-dimensional architecture with two distinct sides: the luminal side with a smoother surface relief; and the abluminal side with a fine mesh of nano- and microfibers. This study tested the ability of this natural scaffold to support functional cardiomyocyte networks, and probed how the local microtopography and composition of the two sides affects cell function. Cardiomyocytes isolated from neonatal rats were seeded in vitro to form cardiac tissue onto luminal (L) or abluminal (Ab) UBM. Immunocytochemistry of contractile cardiac proteins demonstrated growth of cardiomyocyte networks with mature morphology on either side of UBM, but greater cell compactness was seen in L. Fluorescence-based imaging techniques were used to measure dynamic changes in intracellular calcium concentration upon electrical stimulation of L and Ab-grown cells. Functional differences in cardiac tissue grown on the two sides manifested themselves in faster calcium recovery (p < 0.04) and greater hysteresis (difference in response to increasing and decreasing pacing rates) for L vs Ab side (p < 0.03). These results suggest that surface differences may be leveraged to engineer the desired cardiomyocyte responses and highlight the potential of natural scaffolds for fostering heart repair.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号