首页 | 本学科首页   官方微博 | 高级检索  
检索        


Poly(vinyl alcohol) microspheres with pH- and thermosensitive properties as temperature-controlled drug delivery
Authors:Gheorghe Fundueanu  Marieta Constantin  Paolo Ascenzi
Institution:1. Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza 12522, Egypt;2. Forest Biomaterials Department, College of Natural Resources, North Carolina State University, Raleigh, USA
Abstract:One of the most important inconveniences of the pH- and temperature-sensitive hydrogels is the loss of thermosensitivity when relatively large amounts of a pH-sensitive monomer are co-polymerized with N-isopropylacrylamide (NIPAAm). In order to overcome this drawback, we propose here a method to prepare thermosensitive poly(vinyl alcohol) (PVA) microspheres with a higher content of carboxylic groups that preserve thermosensitive properties. Moreover, PVA possesses excellent mechanical properties, biocompatibility and non-toxicity. PVA microspheres were obtained by suspension cross-linking of an acidified aqueous solution of the polymer with glutaraldehyde. Poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) (poly(NIPAAm-co-HMAAm)), designed to have a lower critical solution temperature (LCST) corresponding to that of the human body, was grafted onto PVA microspheres in order to confer them with thermosensitivity. Then, the pH-sensitive functional groups (single bondCOOH) were introduced by reaction between the un-grafted single bondOH groups of PVA and succinic anhydride. The pH- and temperature-sensitive PVA microspheres display a sharp volume transition under physiological conditions around the LCST of the linear polymer. The microspheres possess good drug-loading capacity without losing their thermosensitive properties. Under simulated physiological conditions, the release of drugs is controlled by temperature.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号