首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and characterization of magnetic thermosensitive fluorouracil micelles
Authors:Min Zhang  Xueqin Jin
Affiliation:Department of Pharmacy, College of Pharmacy, Ningxia Medical University, Yinchuan
Abstract:In this study, we synthesized P(NIPAM-co-DMAM)-b-PLA polymers with free radical polymerization and ring-opening addition polymerization, and immediately assembled ‘dextran magnetic layered double hydroxide fluorouracil’ (DMF) magnetic particles into the core of the amphiphilic polymer micelles with synchronous hydration and dialysis, to generate a magnetic thermosensitive fluorouracil drug delivery system. The basic properties of the micelle particles, such as the core–shell-type structure, size, and zeta potential, were studied with 1H-NMR, FTIR, TEM, TGA, laser nanoparticle size analysis, and other characterization techniques. The thermosensitivity of the micelles was investigated by measuring parameters such as the lower critical solution temperature (LCST) and the relationship between the particle size variation and temperature. The drug release curves for the micelles at different temperatures were constructed with a dialysis method. The LCST of the triblock polymers was 42 °C. The particle sizes of the blank micelles and DMF-loaded micelles were 493.6 ± 1.8 nm and 464.9 ± 4.1 nm, respectively, at 25 °C. When the temperature was higher than LSCT, a contraction phase change in the micelle structure occurred, a significant characteristic of the core–shell-type structure, and reversible phase transition phenomena. The release behavior of the drug-loaded micelles showed obvious variations with temperature. Therefore, the magnetic thermosensitive fluorouracil drug delivery system has a good magnetic response and excellent temperature controlled release characteristics, so it can be used as a drug delivery system in magnetically and thermally targeted chemotherapy for tumors.
Keywords:Block copolymers  micelle  magnetic thermosensitive drug delivery system  core–shell structure  temperature-controlled release
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号