首页 | 本学科首页   官方微博 | 高级检索  
     


Extracellular proteinase formation in carbon starving Aspergillus nidulans cultures--physiological function and regulation
Authors:Szilágyi Melinda  Kwon Nak-Jung  Bakti Fruzsina  M-Hamvas Márta  Jámbrik Katalin  Park HeeSoo  Pócsi István  Yu Jae-Hyuk  Emri Tamás
Affiliation:Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
Abstract:Extracellular proteinase formation in carbon depleted cultures of the model filamentous fungus Aspergillus nidulans was studied to elucidate its regulation and possible physiological function. As demonstrated by gene deletion, culture optimization, microbial physiological and enzymological experiments, the PrtA and PepJ proteinases of A. nidulans did not appear to play a decisive role in the autolytic decomposition of fungal cells under the conditions we tested. However, carbon starvation induced formation of the proteinases observable in autolytic cultures. Similar to other degradative enzymes, production of proteinase was regulated by FluG-BrlA asexual developmental signaling and modulated by PacC-dependent pH-responsive signaling. Under the same carbon starved culture conditions, alterations of CreA, MeaB or heterotrimeric G protein mediated signaling pathways caused less significant changes in the formation of extracellular proteinases. Taken together, these results indicate that while the accumulation of PrtA and PepJ is tightly coupled to the initiation of autolysis, they are not essential for autolytic cell wall degradation in A. nidulans. Thus, as Aspergillus genomes contain a large group of genes encoding proteinases with versatile physiological functions, selective control of proteinase production in fungal cells is needed for the improved industrial use of fungi.
Keywords:Aspergillus nidulans  Extracellular proteinase  Autolysis  FluG‐BrlA signaling  Heterologous protein production
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号