首页 | 本学科首页   官方微博 | 高级检索  
     


Origin and distribution of enteric neurones in Xenopus.
Authors:Hans-Henning Epperlein   Danuta Krotoski   Willi Halfter  Anne Frey
Affiliation:(1) Anatomisches Institut Universität Freiburg, Albertstrasse 17, D-7800 Freiburg, Federal Republic of Germany;(2) Developmental Biology Center, University of California, 92717 Irvine, CA, USA;(3) Department of Neurobiology, Anatomy and Cell Science, University of Pittsburgh, 15261 Pittsburgh, PA, USA
Abstract:Summary In Xenopus, we investigated the origin of enteric neurones and their distribution in relation to the extracellular matrix (ECM) components, fibronectin (FN) and tenascin (TN). Enteric neurone precursor cells originate from the anterior trunk neural crest (NC). They migrate along the ventromedial NC pathway (between somites and neural tube/notochord) into the primitive gut (via the dorsal mesentery/lateral plate mesoderm) where they differentiate into enteric neurones. NC cells were identified during their migration and in the gut using the X. laevis — X. borealis nuclear marker system. The neuronal character of NC cells in the gut could be demonstrated immunohistochemically with a monoclonal antibody against the HNK-1 epitope. This antibody is superior to N-CAM and neurofilament antibodies which proved insufficient in Xenopus.In early tadpoles (stage 45), enteric neurones occurred frequently in the mesenchymal lining of the oesophagus, either singly or in groups of two to three cells. In more distal portions of the digestive tract, enteric neurones were rarely found. In metamorphosing tadpoles (stage 62/63), enteric neurones were scattered singly beneath the mucosa, or formed small aggregates between the inner and outer muscle layer throughout the length of the digestive tract. The neurones occurred in positions corresponding to the myenteric and submucosal plexus of higher vertebrates.The distribution of enteric neurones was studied in relation to fibronectin (FN) and tenascin (TN), glycoproteins of the ECM, which support (FN) and inhibit (TN) amphibian NC cell migration. Using immunohisto-chemistry, FN was found during NC cell migration in ECM spaces along the ventromedial pathway, and in the gut between the mucosa and the muscle layers, where it would be able to support adhesion and migration of NC cells. TN, in contrast, appeared much later than FN, both in the dorsal trunk and also ventrally, in the gut. In older tadpoles, TN was present in the mesenchyme and muscle layers of the digestive tract, where it might have an inhibiting influence on the migration of enteric neurones within the gut wall.
Keywords:Xenopus laevis  Xenopus borealis  Migratory pathways  Enteric neurones  Extracellular matrix  Fibronectin  Tenascin
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号