首页 | 本学科首页   官方微博 | 高级检索  
     


Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells
Authors:Cédric Pisani  Estelle Rascol  Christophe Dorandeu  Clarence Charnay  Yannick Guari  Joël Chopineau
Affiliation:1. MACS, UMR 5253 CNRS-ENSCM-UM, Institut Charles Gerhardt de Montpellier, Montpellier, France;2. Direction de la Recherche Fondamentale-BIAM, CEA, Bagnols-sur-Cèze, France;3. IMNO, UMR 5253 CNRS-ENSCM-UM, Institut Charles Gerhardt de Montpellier, Montpellier, France
Abstract:Magnetic mesoporous silica nanoparticles (M-MSNs) are a promising class of nanoparticles for drug delivery. However, a deep understanding of the toxicological mechanisms of action of these nanocarriers is essential, especially in the liver. The potential toxicity on HepaRG cells of pristine, pegylated (PEG), and lipid (DMPC) M-MSNs were compared. Based on MTT assay and real-time cell impedance, none of these NPs presented an extensive toxicity on hepatic cells. However, we observed by transmission electron microscopy (TEM) that the DMPC and pristine M-MSNs were greatly internalized. In comparison, PEG M-MSNs showed a slower cellular uptake. Whole gene expression profiling revealed the M-MSNs molecular modes of action in a time- and dose-dependent manner. The lowest dose tested (1.6?µg/cm2) induced no molecular effect and was defined as ‘No Observed Transcriptional Effect level.’ The dose 16?µg/cm2 revealed nascent but transient effects. At the highest dose (80?µg/cm2), adverse effects have clearly arisen and increased over time. The limit of biocompatibility for HepaRG cells could be set at 16?µg/cm2 for these NPs. Thanks to a comparative pathway-driven analysis, we highlighted the sequence of events that leads to the disruption of hepatobiliary system, elicited by the three types of M-MSNs, at the highest dose. The Adverse Outcome Pathway of hepatic cholestasis was implicated. Toxicogenomics applied to cell cultures is an effective tool to characterize and compare the modes of action of many substances. We propose this strategy as an asset for upstream selection of the safest nanocarriers in the framework of regulation for nanobiosafety.
Keywords:Nanomedicine  particle characterization  whole-gene expression  adverse outcome pathway  hepatic cholestasis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号