首页 | 本学科首页   官方微博 | 高级检索  
检索        


Acute passive stretching alters the mechanical properties of human plantar flexors and the optimal angle for maximal voluntary contraction
Authors:Derek E Weir  Jill Tingley  Geoffrey C B Elder
Institution:(1) School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada;(2) Department of Surgery, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada
Abstract:The purpose of this study was to investigate whether acute passive stretching (APS) reduced maximal isometric voluntary contraction (MVC) of the plantar flexors (PF) and if so, by what mechanisms. The PF in 15 female volunteers were stretched for 10 min (5×120 s) by a torque motor to within 2° of maximum dorsiflexion (D) range of motion (ROM). MVC with twitch interpolation, maximal Hoffmann reflex (Hmax) and compound action potentials (Mmax) were recorded at 20° D. Stretch reflexes (SR) were mechanically induced at 200° s–1 between 0° and 10° D and SR torque and EMG amplitude were determined. All tests were assessed pre- (pre) and post-APS (post-test1). MVC, SR, and Mmax were again assessed after additional stretch was applied mean 26 (1)° D; post-test2] to test if the optimal angle had been altered. EMG was recorded from soleus (SOL), medial gastrocnemius (MG) and tibialis anterior (TA) using bipolar surface electrodes. APS resulted in a 27% decrease in mean peak passive torque (P<0.05). MVC and SR torque were 7% (P<0.05) and 13% lower at post-test1 (P<0.05), respectively. SR EMG amplitude of SOL and MG was reduced by 27% (P<0.05) and 22% (P<0.05), respectively. The Hmax/Mmax EMG and Hmax/Mmax torque ratios were unchanged at post-test1. At post-test2, MVC and SR EMG recovered to pre-APS values, while the SR and Mmax torque increased by 19% and 13%, respectively (P<0.05). The decrease in MVC during post-test1 was attributed to changes in the mechanical properties of PF and not to reduced muscle activation.
Keywords:Mechanical properties  Strength  Stretching  Stretch reflex
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号