首页 | 本学科首页   官方微博 | 高级检索  
     


Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and d-serine
Authors:Kenji Hashimoto   Yuko Fujita   Tamaki Ishima   Shigeyuki Chaki  Masaomi Iyo
Affiliation:Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, Japan. hashimoto@faculty.chiba-u.jp
Abstract:Accumulating evidence suggests that the glycine modulatory site on the NMDA receptor could be potential therapeutic target for cognitive deficits in schizophrenia. The present study was undertaken to examine the effects of the glycine transporter-1 (GlyT-1) inhibitor, (R)-(N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (NFPS), on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were significantly improved by subsequent subchronic (2-week) administration of NFPS (1.0 and 3.0 mg/kg/day) or D-serine (600 mg/kg/day). However, PCP-induced cognitive deficits were not improved by a single administration of NFPS (3.0 mg/kg). Furthermore, Western blot analysis revealed that levels of GlyT-1 in the hippocampus, but not frontal cortex, of the PCP (10 mg/kg/day for 10 days)-treated mice were significantly higher than those of saline-treated mice. An in vivo microdialysis study revealed that repeated PCP administration significantly decreased the extracellular levels of glycine in the hippocampus, but not frontal cortex, of mice. These findings suggest that repeated PCP administration increased the density of GlyT-1 in the hippocampus of mouse brain, and that the GlyT-1 inhibitor NFPS could ameliorate cognitive deficits in mice after repeated administration of PCP.
Keywords:Schizophrenia   Cognition   Glycine   NMDA receptor   Transport   Hippocampus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号