首页 | 本学科首页   官方微博 | 高级检索  
     


Glucagon receptor knockout mice display increased insulin sensitivity and impaired beta-cell function
Authors:Sørensen Heidi  Winzell Maria Sörhede  Brand Christian L  Fosgerau Keld  Gelling Richard W  Nishimura Erica  Ahren Bo
Affiliation:Diabetes Research Unit, Novo Nordisk Park, 2760 M?l?v, Denmark. hesn@novonordisk.com
Abstract:In previous studies, glucagon receptor knockout mice (Gcgr(-/-)) display reduced blood glucose and increased glucose tolerance, with hyperglucagonemia and increased levels of glucagon-like peptide (GLP)-1. However, the role of glucagon receptor signaling for the regulation of islet function and insulin sensitivity is unknown. We therefore explored beta-cell function and insulin sensitivity in Gcgr(-/-) and wild-type mice. The steady-state glucose infusion rate during hyperinsulinemic-euglycemic clamp was elevated in Gcgr(-/-) mice, indicating enhanced insulin sensitivity. Furthermore, the acute insulin response (AIR) to intravenous glucose was higher in Gcgr(-/-) mice. The augmented AIR to glucose was blunted by the GLP-1 receptor antagonist, exendin-3. In contrast, AIR to intravenous administration of other secretagogues was either not affected (carbachol) or significantly reduced (arginine, cholecystokinin octapeptide) in Gcgr(-/-) mice. In islets isolated from Gcgr(-/-) mice, the insulin responses to glucose and several insulin secretagogues were all significantly blunted compared with wild-type mice. Furthermore, glucose oxidation was reduced in islets from Gcgr(-/-) mice. In conclusion, the present study shows that glucagon signaling is required for normal beta-cell function and that insulin action is improved when disrupting the signal. In vivo, augmented GLP-1 levels compensate for the impaired beta-cell function in Gcgr(-/-) mice.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号