首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational changes in the A3 domain of von Willebrand factor modulate the interaction of the A1 domain with platelet glycoprotein Ib
Authors:Obert B  Houllier A  Meyer D  Girma J P
Affiliation:INSERM U.143, H?pital de Bicêtre, Paris, France.
Abstract:Bitiscetin has recently been shown to induce von Willebrand factor (vWF)-dependent aggregation of fixed platelets (Hamako J, et al, Biochem Biophys Res Commun 226:273, 1996). We have purified bitiscetin from Bitis arietans venom and investigated the mechanism whereby it promotes a form of vWF that is reactive with platelets. In the presence of bitiscetin, vWF binds to platelets in a dose-dependent and saturable manner. The binding of vWF to platelets involves glycoprotein (GP) Ib because it was totally blocked by monoclonal antibody (MoAb) 6D1 directed towards the vWF-binding site of GPIb. The binding also involves the GPIb-binding site of vWF located on the A1 domain because it was inhibited by MoAb to vWF whose epitopes are within this domain and that block binding of vWF to platelets induced by ristocetin or botrocetin. However, in contrast to ristocetin or botrocetin, the binding site of bitiscetin does not reside within the A1 domain but within the A3 domain of vWF. Thus, among a series of vWF fragments, 125I-bitiscetin only binds to those that overlap the A3 domain, ie, SpIII (amino acid [aa] 1-1365), SpI (aa 911-1365), and rvWF-A3 domain (aa 920-1111). It does not bind to SpII corresponding to the C-terminal part of vWF subunit (aa 1366-2050) nor to the 39/34/kD dispase species (aa 480-718) or T116 (aa 449-728) overlapping the A1 domain. In addition, bitiscetin that does not bind to DeltaA3-rvWF (deleted between aa 910-1113) has no binding site ouside the A3 domain. The localization of the binding site of bitiscetin within the A3 domain was further supported by showing that MoAb to vWF, which are specific for this domain and block the interaction between vWF and collagen, are potent inhibitors of the binding of bitiscetin to vWF and consequently of the bitiscetin-induced binding of vWF to platelets. Thus, our data support the hypothesis that an interaction between the A1 and A3 domains exists that may play a role in the function of vWF by regulating the ability of the A1 domain to bind to platelet GPIb.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Blood》浏览原始摘要信息
点击此处可从《Blood》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号