首页 | 本学科首页   官方微博 | 高级检索  
检索        


Trypanosoma cruzi induces regulatory dendritic cells in vitro
Authors:Poncini Carolina Verónica  Alba Soto Catalina Dirney  Batalla Estela  Solana Maria Elisa  González Cappa Stella Maris
Institution:Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 (piso 13), CP 1121, Buenos Aires, Argentina.
Abstract:A main feature of acute infection with Trypanosoma cruzi is the presence of immunological disorders. A previous study demonstrated that acute infection with the virulent RA strain downregulates the expression of major histocompatibility complex class II (MHC-II) on antigen-presenting cells and impairs the T-cell stimulatory capacity of splenic dendritic cells (DC). In the present work, we assessed the ability of trypomastigotes (Tp) to modulate the differentiation stage and functionality of bone marrow-derived DC in vitro. We observed that the Tp stage of T. cruzi failed to activate DC, which preserved their low expression of MHC-II and costimulatory molecules, as well as their endocytic activity. We also show that Tp induced transforming growth factor beta (TGF-beta) secretion by DC and enhanced the gap between interleukin-10 (IL-10) and IL-12p70 production, showing a higher IL-10/IL-12p70 ratio upon lipopolysaccharide (LPS) treatment. In addition, we observed that Tp prevented DC full activation induced by LPS, thereby downregulating their MHC-II surface expression and inhibiting their capacity to stimulate lymphocyte proliferation. In vitro IL-10 neutralization during the differentiation process of DC with Tp+LPS showed a reversion of their inhibitory effect during mixed lymphocyte reaction. In contrast, only simultaneous neutralization of IL-10 and TGF-beta, after DC differentiation, was involved in the partial restitution of lymphocyte proliferation. Since both TGF-beta and IL-10 are immunosuppressive cytokines essential in the modulation of the immune response and important in the induction of tolerance, our results suggest for the first time that Tp are responsible for the generation of regulatory DC in vitro.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号