Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles |
| |
Authors: | Kao Huei-Jen Lin Hong-Ru Lo Yu-Li Yu Shi-Ping |
| |
Affiliation: | Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan. |
| |
Abstract: | Patients using ophthalmic drops are faced with frequent dosing schedules and difficult drop instillation. Therefore, a long-lasting pilocarpine-loaded chitosan (CS)/Carbopol nanoparticle ophthalmic formulation was developed. The physicochemical properties of the prepared nanoparticles were investigated using dynamic light scattering, zeta-potential, transmission electron microscopy, Fourier transform infrared ray spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The sustained-release effects of pilocarpine-loaded nanoparticles were evaluated using in-vitro release and in-vivo miotic tests, and compared with pilocarpine in solution, gel and liposomes. We found that the prepared nanoparticles were about 294 nm in size. DSC and FT-IR studies suggested that an electrostatic interaction between CS and Carbopol contributes at least in part to the stabilization of pilocarpine/CS/Carbopol nanoparticles. When compared with pilocarpine in solution, gel or liposomes, the best slow-release profile of pilocarpine from the prepared nanoparticles occurred in a dissolution test. In the in-vivo miotic study, pilocarpine-loaded CS/Carbopol nanoparticles showed the most significant long-lasting decrease in the pupil diameter of rabbits. The advantages of CS and Carbopol are good biocompatibility, biodegradability and low toxicity. CS is also a mucoadhesive polymer. Thus, pilocarpine/CS/Carbopol nanoparticles may provide an excellent potential alternative ophthalmic sustained-release formulation of pilocarpine for clinical use. CS/Carbopol nanoparticles may also be useful for a variety of other therapeutic delivery systems. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|