首页 | 本学科首页   官方微博 | 高级检索  
检索        


On randomly changing conformity bias in cultural transmission
Authors:Kaleda K Denton  Uri Liberman  Marcus W Feldman
Institution:aDepartment of Biology, Stanford University, Stanford, CA, 94305;bSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel, 69978
Abstract:Humans and nonhuman animals display conformist as well as anticonformist biases in cultural transmission. Whereas many previous mathematical models have incorporated constant conformity coefficients, empirical research suggests that the extent of (anti)conformity in populations can change over time. We incorporate stochastic time-varying conformity coefficients into a widely used conformity model, which assumes a fixed number n of “role models” sampled by each individual. We also allow the number of role models to vary over time (nt). Under anticonformity, nonconvergence can occur in deterministic and stochastic models with different parameter values. Even if strong anticonformity may occur, if conformity or random copying (i.e., neither conformity nor anticonformity) is expected, there is convergence to one of the three equilibria seen in previous deterministic models of conformity. Moreover, this result is robust to stochastic variation in nt. However, dynamic properties of these equilibria may be different from those in deterministic models. For example, with random conformity coefficients, all equilibria can be stochastically locally stable simultaneously. Finally, we study the effect of randomly changing weak selection. Allowing the level of conformity, the number of role models, and selection to vary stochastically may produce a more realistic representation of the wide range of group-level properties that can emerge under (anti)conformist biases. This promises to make interpretation of the effect of conformity on differences between populations, for example those connected by migration, rather difficult. Future research incorporating finite population sizes and migration would contribute added realism to these models.

Cavalli-Sforza and Feldman (1) studied the finite population dynamics of a trait whose transmission from one generation to the next depended on the mean value of that trait in the population. This “group transmission” constrained the within-group variability but could lead to increasing variance in the average trait value between groups. Other analyses of cultural transmission biases have incorporated characteristics of trait variation, such as the quality, and characteristics of transmitters, including success and prestige (2). Another class of transmission biases is couched in terms of the frequencies of the cultural variants in the population (3). These “frequency-dependent” biases include conformity and anticonformity, which occur when a more common variant is adopted at a rate greater or less than its population frequency, respectively (4).Humans have exhibited conformity in mental rotation (5), line discrimination (6), and numerical discrimination tasks (7). Anticonformity has been exhibited by young children performing numerical discrimination (7). Unbiased frequency-dependent transmission, known as random copying (8), has been suggested to account for choices of dog breeds (9), Neolithic pottery motifs, patent citations, and baby names (10, 11). However, baby name distributions appear more consistent with frequency-dependent (8, 12) and/or other (13, 14) biases.In nonhuman animals, conformity has been observed in nine-spined sticklebacks choosing a feeder (15) and great tits solving a puzzle box (16, 17) (but see ref. 18). Fruit flies displayed both conformist and anticonformist bias with respect to mate choice (19) (but these authors used a different definition of anticonformity from that of ref. 4, which we use, and therefore did not consider these behaviors to be anticonformist).Asch (20, 21) used a different definition of conformity from ref. 4, namely “the overriding of personal knowledge or behavioral dispositions by countervailing options observed in others” (ref. 22, p. 34). Aschian conformity (22) has been observed in chimpanzees (23, 24), capuchin monkeys (25, 26) (but see ref. 27), vervet monkeys (28), and great tits (16). It has also been empirically tested in at least 133 studies of humans and, in the United States, has declined from the 1950s to the 1990s (29).Temporal variation may also occur in forms of conformity other than Aschian. In ref. 12, popular US baby names from 1960 to 2010 show a concave turnover function indicative of negative frequency-dependent bias, but male baby names from earlier decades (1880 to 1930) show a convex turnover indicative of positive frequency-dependent or direct bias. However, most previous mathematical models of conformity have incorporated constant, rather than time-dependent, conformity coefficients.Cavalli-Sforza and Feldman (ref. 3, chap. 3) and Boyd and Richerson (ref. 4, chap. 7) studied models of frequency-dependent transmission of a cultural trait with two variants. Boyd and Richerson (4) incorporated conformist and anticonformist bias through a conformity coefficient denoted by D. In their simplest model, if the frequency of variant A is p and that of variant B is 1p, then the frequency of variant A in the offspring generation, p, isp=p+Dp(1p)(2p1),1]where D>0 entails conformity (A increases if its frequency is p>12), D<0 entails anticonformity, D=0 entails random copying, and 2<D<1. In this model, each offspring samples the cultural variants of n=3 members of the parental generation (hereafter, role models). Sampling n>3 role models requires different constraints and, if n>4, there are multiple conformity coefficients (Eq. 19).Many subsequent models have built upon Boyd and Richerson’s (4) simplest model (Eq. 1). These have incorporated individual learning, information inaccuracy due to environmental change (3034), group selection (35), and other transmission biases, including payoff bias (36), direct bias, and prestige bias (37). Other models, which include a single conformity coefficient and preserve the essential features of Eq. 1, incorporate individual learning, environmental variability (32, 38), group selection (39), and multiple cultural variants (38).In agent-based statistical physics models, the up and down spins of an electron are analogous to cultural variants A and B (40, 41). Individuals are nodes in a network and choose among a series of actions with specified probabilities, such as independently acquiring a spin, or sampling neighboring individuals and adopting the majority or minority spin in the sample. The number of sampled role models can be greater than three (42, 43). (Anti)conformity may occur if all (4247), or if at least r (40, 48), sampled individuals have the same variant. In contrast, Boyd and Richerson’s (4) general model (Eq. 19) allows, for example, stronger conformity to a 60% majority of role models and weaker conformity or anticonformity to a 95% majority (in humans, this might result from a perceived difference between “up-and-coming” and “overly popular” variants).In Boyd and Richerson’s (4) general model, individuals sample n role models, which is more realistic than restricting n to 3 (as in Eq. 1); individuals may be able to observe more than three members of the previous generation. With n>4, different levels of (anti)conformity may occur for different samples j of n role models with one variant. In addition to the example above with 60 and 95% majorities, other relationships between the level of conformity and the sample j of n are possible. For example, the strength of conformity might increase as the number of role models with the more common variant increases. In a recent exploration of Boyd and Richerson’s (4) general model, we found dynamics that departed significantly from those of Eq. 1 (49). If conformity and anticonformity occur for different majorities j of n role models (i.e., j>n2), polymorphic equilibria may exist that were not possible with Eq. 1. In addition, strong enough anticonformity can produce nonconvergence: With as few as 5 role models, stable cycles in variant frequencies may arise, and with as few as 10 role models, chaos is possible. Such complex dynamics may occur with or without selection.Here, we extend both Boyd and Richerson’s (4) simplest (Eq. 1) and general (Eq. 19) models to allow the conformity coefficient(s) to vary randomly across generations, by sampling them from probability distributions. Although some agent-based models allow individuals to switch between “conformist” and “non-” or “anticonformist” states over time (40, 42, 47, 50, 51), to our knowledge, random temporal variation in the conformity coefficients themselves has not been modeled previously. In reality, the degree to which groups of individuals conform may change over time, as illustrated by the finding that young children anti-conformed while older children conformed in a discrimination task (7); thus, it seems reasonable to expect that different generations may also exhibit different levels of conformity. Indeed, generational changes have occurred for Aschian conformity (29) and possibly in frequency-dependent copying of baby names (12). Our stochastic model may therefore produce more realistic population dynamics than previous deterministic models, and comparisons between the two can suggest when the latter is a reasonable approximation to the former.We also allow the number of role models, nt, to vary over time. Agent-based conformity models have incorporated temporal (43) and individual (43, 45, 46) variation in the number of sampled individuals, whereas here, all members of generation t sample the same number nt of role models. Causes of variation in nt are not explored here, but there could be several. For instance, different generations of animals may sample different numbers of role models due to variation in population density. In humans, changes in the use of social media platforms or their features may cause temporal changes in the number of observed individuals. For example, when Facebook added the feature “People You May Know,” the rate of new Facebook connections in a New Orleans dataset nearly doubled (52).In the stochastic model without selection, regardless of the fluctuation in the conformity coefficient(s), if there is conformity on average, the population converges to one of the three equilibria present in Boyd and Richerson’s (4) model with conformity (D(j)>0 for n2<j<n in Eq. 19). These are p*=1 (fixation on variant A), p*=0 (fixation on variant B), and p*=12 (equal representation of A and B). However, their stability properties may differ from those in the deterministic case. In Boyd and Richerson’s (4) model with random copying, every initial frequency p0 is an equilibrium. Here, with random copying expected and independent conformity coefficients, there is convergence to p*=0,12, or 1. In this case, and in the case with conformity expected, convergence to p*=0,12, or 1 also holds with stochastic variation in the number of role models, nt. With either stochastic or constant weak selection in Boyd and Richerson’s (4) simplest model (Eq. 1) and random copying expected, there is convergence to a fixation state (p*=0 or 1). Finally, with anticonformity in the deterministic model or anticonformity expected in the stochastic model, nonconvergence can occur.
Keywords:random conformity  stochastic local stability  convergence  random selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号