首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of osmotic stress on spontaneous calcium sparks in rat ventricular myocytes
Authors:Xie Hong  Zhu Pei-hong
Affiliation:Unit of Cell Signal Transduction, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Abstract:AIM: To study whether the volume of cardiomyocytes and their functions would change under severe pathological conditions or osmotic stress. To clarify the role of ryanodine receptors/calcium release channels (RyRs) in the functional change, the effect of osmotic stress on spontaneous Ca2+ sparks in rat ventricular myocytes was investigated. METHODS: A laser scanning confocal microscope was used to detect spontaneous Ca2+ sparks of intact or saponin permeabilized myocytes loaded with Fluo-4. High and low tonicity was obtained by adding sucrose and reducing NaCl concentration in the external medium, respectively. RESULTS: In intact myocytes the frequency of Ca2+ sparks was increased and decreased by hyperosmotic (1.5 T) and hyposmotic (0.6 T) exposure, respectively. In addition, hyperosmotic exposure increased the temporal parameters and decreased the spatial parameter of Ca2+ sparks, while opposite changes occurred with hyposmotic exposure. The spatio-temporal properties of Ca2+ sparks were slightly affected by altering [K+]i (50-200 mmol/L) in saponin permeabilized myocytes in the presence of 8% dextran. It was observed that the spatio-temporal parameters of the Ca2+ sparks in permeabilized myocytes were dose-dependently altered by dextran. The propagating velocity of Ca2+ waves in intact and permeabilized myocyte was also affected by osmotic pressure or dextran. CONCLUSION: The effect of osmotic stress on the frequency of spontaneous Ca2+ sparks might be ascribed to the change of myoplasmic Ca2+ and Ca2+ content in the sarcoplasmic reticulum, while the effect on the spatio-temporal properties is caused by the alteration of Ca2+ diffusion mainly resulting from the morphological change of the myocytes.
Keywords:osmotic stress    calcium sparks    rat ventricular myocytes
本文献已被 维普 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号