首页 | 本学科首页   官方微博 | 高级检索  
检索        


Silencing Bcl-2 in models of mantle cell lymphoma is associated with decreases in cyclin D1, nuclear factor-kappaB, p53, bax, and p27 levels
Authors:Tucker Catherine A  Kapanen Anita I  Chikh Ghania  Hoffman Brad G  Kyle Alastair H  Wilson Ian M  Masin Dana  Gascoyne Randy D  Bally Marcel  Klasa Richard J
Institution:Department of Advanced Therapeutics, BC Cancer Research Center, Vancouver, British Columbia, Canada V5Z 1L3. ctucker@bccrc.ca
Abstract:Molecular mechanisms responsible for lymphoma resistance to apoptosis often involve the bcl-2 pathway. In this study, we investigated the cell signaling pathways activated in bcl-2-overexpressing human mantle cell lymphoma cell lines (JVM-2 and Z-138) that have been treated with oblimersen, a molecular gene silencing strategy that effectively suppresses bcl-2 in vitro and in vivo. Z-138 cells expressed higher levels of bcl-2 and were more sensitive to the effects of bcl-2 silencing, mediated by oblimersen or bcl-2 small interfering RNA, in vitro. Tumors derived following injection of Z-138 cells were sensitive to oblimersen as judged by decreases in tumor growth rate and decreases in cell proliferation (as measured by Ki-67). Immunohistochemistry and Western blot analysis of oblimersen-treated Z-138 tumors revealed a dose-dependent decrease in bcl-2 levels and an associated increase in the proapoptotic proteins caspase-3 and caspase-9. Silencing bcl-2 in Z-138 xenografts revealed an associated dose-dependent suppression of bax, a decrease in nuclear factor-kappaB and phospho-nuclear factor-kappaB, and transient loss of p53 levels. Coimmunoprecipitation studies suggest that the latter observation is mediated by an association between bcl-2 and phospho-mdm2. Bcl-2 silencing also led to p27 down-regulation and coimmunoprecipitation studies point to a role for bcl-2 in regulation of p27 localization/degradation. Bcl-2 silencing was also correlated with loss of cyclin D1a protein levels but not cyclin D1b levels. Coimmunoprecipitation studies indicate that bcl-2 may mediate its effects on cyclin D1a via interaction with p38 mitogen-activated protein kinase as well as a previously unreported interaction between bcl-2 and cyclin D1a.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号