首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of pentylenetetrazole-induced kindling on thyrotropin-releasing hormone biosynthesis and receptors in rat brain
Authors:Jaworska-Feil L  Turchan J  Przewłocka B  Budziszewska B  Leśkiewicz M  Lasoń W
Institution:Department of Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków.
Abstract:It has been postulated that changes in thyrotropin-releasing hormone biosynthesis may be involved in the mechanism of kindling--an animal model of epileptogenesis. To test this hypothesis, a time-course study was carried out to investigate the effects of pentylenetetrazole kindling (40 mg/kg i.p., daily for eight days) on the expression of gene coding for preprothyrotropin-releasing hormone, the thyrotropin-releasing hormone tissue level and thyrotropin-releasing hormone receptor parameters in rat brain. As shown by an in situ hybridization study, a single, convulsant dose of pentylenetetrazole (70 mg/kg i.p.) increased the preprothyrotropin-releasing hormone messenger RNA level in the dentate gyrus of the hippocampal formation and piriform cortex after 3 h and, to a greater extent, after 24 h. Those changes were accompanied with increases in the thyrotropin-releasing hormone level in the striatum, hippocampus, amygdala and piriform cortex. Seven days after single pentylenetetrazole administration, the thyrotropin-releasing hormone level was still significantly elevated in the piriform cortex and striatum. Acute pentylenetetrazole decreased the density (Bmax) of thyrotropin-releasing hormone receptors in the striatum after 3 and 24 h, and increased that density in the piriform cortex and amygdala after 24 h and seven days, respectively. The thyrotropin-releasing hormone receptor affinity (Kd) was decreased in the striatum and increased in the amygdala after only 3 h. Kindled rats showed a moderate increase in the preprothyrotropin-releasing hormone messenger RNA content in the dentate gyrus of the hippocampal formation and piriform cortex after 3 and 24 h; however, a significant decrease in those parameters was found after 14 days. After 3 and 24 h, pentylenetetrazole kindling also elevated the thyrotropin-releasing hormone content in the hippocampus, piriform cortex, and striatum (in the latter structure after 24 h only), whereas in the septum the thyrotropin-releasing hormone level was decreased. After seven days, the thyrotropin-releasing hormone level was still elevated in the hippocampus and piriform cortex of kindled rats, but after 14 days it was significantly lowered in the hippocampus. The kindled rats also showed a significant decrease in the density (Bmax) of thyrotropin-releasing hormone receptors in the striatum (after 24 h, seven and 14 days), and an increase in the piriform cortex (after seven days). The thyrotropin-releasing hormone receptor affinity (Kd) value was increased in the hippocampus after seven and 14 days, and in the piriform cortex after seven days. These results indicate that pentylenetetrazole kindling induces long-lasting alterations in the thyrotropin-releasing hormone biosynthesis and thyrotropin-releasing hormone receptor affinity in discrete regions of rat brain. These region-specific changes, in particular down-regulation of the thyrotropin-releasing hormone biosynthesis in the hippocampus, may be involved in chronic neuronal hyperexcitability associated with kindling.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号