首页 | 本学科首页   官方微博 | 高级检索  
检索        


Repair of porcine articular cartilage defect with autologous chondrocyte transplantation.
Authors:Hongsen Chiang  Tzong-Fu Kuo  Chen-Chi Tsai  Mei-Chiao Lin  Bin-Ru She  Yi-You Huang  Hsuan-Shu Lee  Chang-Shun Shieh  Min-Huey Chen  John A M Ramshaw  Jerome A Werkmeister  Rocky S Tuan  Ching-Chuan Jiang
Institution:Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
Abstract:Articular cartilage is known to have poor healing capacity after injury. Autologous chondral grafting remains the mainstay to treat well-defined, full-thickness, symptomatic cartilage defects. We demonstrated the utilization of gelatin microbeads to deliver autologous chondrocytes for in vivo cartilage generation. Chondrocytes were harvested from the left forelimbs of 12 Lee-Sung pigs. The cells were expanded in monolayer culture and then seeded onto gelatin microbeads or left in monolayer. Shortly before implantation, the cell-laden beads were mixed with collagen type I gel, while the cells in monolayer culture were collected and re-suspended in culture medium. Full-thickness cartilage defects were surgically created in the weight-bearing surface of the femoral condyles of both knees, covered by periosteal patches taken from proximal tibia, and sealed with a porcine fibrin glue. In total, 48 condyles were equally allotted to experimental, control, and null groups that were filled beneath the patch with chondrocyte-laden beads in gel, chondrocytes in plain medium solution, or nothing, respectively. The repair was examined 6 months post-surgery on the basis of macroscopic appearance, histological scores based on the International Cartilage Repair Society Scale, and the proportion of characteristic chondrocytes. Tensile stress-relaxation behavior was determined from uniaxial indentation tests. The experimental group scored higher than the control group in the categories of matrix nature, cell distribution pattern, and absence of mineralization, with similar surface smoothness. Both the experimental and control groups were superior to the null group in the above-mentioned categories. Viable cell populations were equal in all groups, but the proportion of characteristic chondrocytes was highest in the experimental group. Matrix stiffness was ranked as null > native cartilage > control > experimental group. Transplanted autologous chondrocytes survive and could yield hyaline-like cartilage. The application of beads and gel for transplantation helped to retain the transferred cells in situ and maintain a better chondrocyte phenotype.
Keywords:Autologous chondrocyte transplantation  Gelatin beads  Cartilage repair and regeneration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号