首页 | 本学科首页   官方微博 | 高级检索  
     


Cytochrome P450 omega-hydroxylase inhibition reduces infarct size during reperfusion via the sarcolemmal KATP channel
Authors:Gross Eric R  Nithipatikom Kasem  Hsu Anna K  Peart Jason N  Falck John R  Campbell William B  Gross Garrett J
Affiliation:Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Abstract:Inhibition of 20-hydroxyeicosatrienoic acid (20-HETE), by pretreatment with pharmacological inhibitors of cytochrome P450 (CYP) omega-hydroxylase, has been shown to reduce infarct size in canines when administered prior to ischemia. However, it is unknown whether these agents reduce infarct size when administered just prior to reperfusion and if the sarcolemmal and/or mitochondrial K(ATP) channels (sK(ATP) and mK(ATP)) contribute to cardioprotection. Therefore, we determined whether specific CYP inhibitors for epoxygenases and omega-hydroxylases are cardioprotective when given either prior to ischemia or prior to reperfusion and furthermore, if selective inhibition of the sK(ATP) by HMR-1098 or mK(ATP) by 5-hydroxydecanoic acid (5-HD) could abrogate this effect. Male Sprague-Dawley rats underwent 30 minutes of ischemia followed by 2 hours of reperfusion. Groups received either miconazole (MIC, non-selective CYP inhibitor, 3 mg/kg), 17-octadecynoic acid (17-ODYA, CYP omega-hydroxylase inhibitor, 0,3 or 3 mg/kg), N-methylsulfonyl-12, 12-dibromododec-11-enamide (DDMS, CYP omega-hydroxylase inhibitor, 0,4 or 4 mg/kg), N-methanesulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH, CYP epoxygenase inhibitor, 3 mg/kg), or vehicle either 10 minutes prior to ischemia or 5 minutes prior to reperfusion. Rats also received either HMR-1098 (6 mg/kg) or 5-HD (10 mg/kg) 10 minutes prior to reperfusion, with subsets of rats also receiving either MIC or 17-ODYA 5 minutes prior to reperfusion. DDMS and 17-ODYA dose dependently reduced infarct size. Rats treated with MIC, 17-ODYA and DDMS, but not MS-PPOH, produced comparable reductions in infarct size when administered prior to ischemia or reperfusion compared to vehicle. HMR-1098, but not 5-HD, also blocked the infarct size reduction afforded by MIC and 17-ODYA. These data suggest a novel cardioprotective pathway involving CYP omega-hydroxylase inhibition and subsequent activation of the sK(ATP) channel during reperfusion.
Keywords:Cytochrome P450   Ischemia   KATP   20-HETE   Reperfusion
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号