首页 | 本学科首页   官方微博 | 高级检索  
     


Physical and Chemical Characterization and Immunologic Properties of Salmonella enterica Serovar Typhi Capsular Polysaccharide-Diphtheria Toxoid Conjugates
Authors:Changfa Cui  Rodney Carbis  So Jung An  Hyun Jang  Cecil Czerkinsky  Shousun C. Szu  John D. Clemens
Affiliation:International Vaccine Institute, SNU Research Park, San 4-8 Bongcheon-7 Dong, Kwanak-Gu, Seoul, Korea, 151-919,1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 208542.
Abstract:Typhoid fever remains a serious public health problem in developing countries, especially among young children. Recent studies showed more than 50% of typhoid cases are in children under 5 years old. Licensed vaccines, such as Salmonella enterica serovar Typhi capsular Vi, did not confer protection against typhoid fever for this age group. Vi conjugate, prepared by binding Vi to Pseudomonas aeruginosa recombinant exoprotein A (rEPA), induces protective levels of antibody at as young as 2 years old. Because of the lack of regulatory precedent for rEPA in licensing vaccines, we employed diphtheria toxoid (DT) as the carrier protein to accommodate accessibility in developing countries. Five lots of Vi-DT conjugates were prepared using adipic acid dihydrazide (ADH) as the linker. All 5 lots showed consistency in their physical and chemical characteristics and final yields. These Vi-DT conjugates elicited levels of IgG anti-Vi in young mice significantly higher than those in mice injected with Vi alone and induced a booster response upon reinjection. This booster effect was absent if the Vi replaced one of the two conjugate injections. Vi-DT was stable under repeated freeze-thaw (20 cycles). We plan to perform clinical evaluation of the safety and immunogenicity of Vi-DT when added to the infant combination vaccines.Typhoid fever, a serious systemic infection caused by Salmonella enterica serovar Typhi, remains a major public health problem in Central Asia, Southeast Asia, Africa, and Latin America (11, 52, 53). It was estimated that more than 21 million cases of typhoid fever and >200,000 deaths occurred in 2000 (10). The treatment of patients and management of asymptomatic carriers are becoming more difficult due to the worldwide emergence of multidrug-resistant (MDR) strains (2, 15, 29, 42, 43). Vaccination is considered the most promising strategy for the control of typhoid fever in developing countries (11, 19, 52, 53).Typhoid fever in children younger than 5 years old has often been unrecognized due to atypical clinical symptoms, difficulties in the number and volume of blood drawings, and use of less than optimal culture media (35, 46). Several studies have shown that the incidence of typhoid fever among children less than 5 years old is similar to that in school age children and young adults (14, 27, 34, 50, 51).The 3 licensed typhoid vaccines have limited efficacy, and none are suitable for young children under 5 years old. The use of heat-inactivated whole-cell vaccine was suspended in many countries because of its reactogenicity. The parenteral Vi polysaccharide and the live attenuated oral Ty21a vaccine were introduced in the late 1980s; both vaccines are well accepted and confer moderate protection (50 to 70%) in older children and adults. However, neither vaccine is licensed for routine immunization of infants (52).The Vi capsular polysaccharide is both an essential virulence factor and a protective antigen for S. Typhi (36, 38, 39). The concentration of serum IgG anti-Vi is correlated with immunity to the pathogen (22, 25, 26, 28, 36, 38, 49). However, Vi is not suitable for routine immunization of infants and young children because of its age-related immunogenicity and T-cell independence. As was shown for other capsular polysaccharides, such as Haemophilus influenzae type b (8, 37); meningococcus groups A, C, and W135; and Streptococcus pneumoniae (12, 20), Vi covalently bound with protein conferred T-cell dependence and increased immunogenicity (48-50). To date, diphtheria toxoid (DT), tetanus toxoid (TT), cholera toxins (CT), the B subunit of the heat-labile toxin (LT-B) of Escherichia coli, recombinant outer membrane protein of Klebsiella pneumoniae (rP40), and iron-regulated outer-membrane proteins (IROMPs) of S. Typhi have served as carriers for Vi polysaccharide in laboratory studies (16, 17, 32, 48-50; personal communications). An improved method was developed (24), utilizing adipic acid dihydrazide (ADH) as the linker and Pseudomonas aeruginosa recombinant exoprotein A (rEPA) as the carrier. Clinical trials of Vi-rEPA conjugates conferred 89% protection in Vietnamese children 2 to 5 years old for 46 months (23, 26, 28). The level of serum IgG anti-Vi induced by Vi-rEPA conjugates was correlated with prevention of typhoid fever in these studies (7, 21-23, 26, 28).One limitation of using rEPA as the carrier protein is the lack of regulatory precedent in licensing vaccines. In this report, five lots of Vi conjugates using DT manufactured by pharmaceutical companies in China and India were prepared (24, 48, 49). Modifications of conjugation procedures were made for the purposes of easy adoption and scale up by manufacturers. The stability of Vi-DT was studied for the feasibility of stockpiling in disaster relief.Another important aspect of conjugate vaccine implementation is the optimum immunization formulation and schedule using alternating injections of polysaccharide and conjugate. Priming or boosting effects of polysaccharide on its conjugate vaccine have been observed in infants injected with pneumococcal and meningococcal vaccines (3, 4, 31, 40). There was no consistent conclusion about various types of polysaccharides studied (6, 9, 31, 40, 41). Here, we compared the immune response of Vi polysaccharide injected before or after the administration of Vi-DT with the responses of those receiving 2 injections of Vi-DT. We also investigated the dosage effect for the purpose of better formulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号