首页 | 本学科首页   官方微博 | 高级检索  
检索        


Phosphorylation of Ribosomal Protein S6 Mediates Mammalian Target of Rapamycin Complex 1–Induced Parathyroid Cell Proliferation in Secondary Hyperparathyroidism
Authors:Oded Volovelsky  Gili Cohen  Ariel Kenig  Gilad Wasserman  Avigail Dreazen  Oded Meyuhas  Justin Silver  Tally Naveh-Many
Institution:*Department of Nephrology, Hadassah-Hebrew University Medical Center, and;Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel–Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
Abstract:Secondary hyperparathyroidism is characterized by increased serum parathyroid hormone (PTH) level and parathyroid cell proliferation. However, the molecular pathways mediating the increased parathyroid cell proliferation remain undefined. Here, we found that the mTOR pathway was activated in the parathyroid of rats with secondary hyperparathyroidism induced by either chronic hypocalcemia or uremia, which was measured by increased phosphorylation of ribosomal protein S6 (rpS6), a downstream target of the mTOR pathway. This activation correlated with increased parathyroid cell proliferation. Inhibition of mTOR complex 1 by rapamycin decreased or prevented parathyroid cell proliferation in secondary hyperparathyroidism rats and in vitro in uremic rat parathyroid glands in organ culture. Knockin rpS6p−/− mice, in which rpS6 cannot be phosphorylated because of substitution of all five phosphorylatable serines with alanines, had impaired PTH secretion after experimental uremia- or folic acid–induced AKI. Uremic rpS6p−/− mice had no increase in parathyroid cell proliferation compared with a marked increase in uremic wild–type mice. These results underscore the importance of mTOR activation and rpS6 phosphorylation for the pathogenesis of secondary hyperparathyroidism and indicate that mTORC1 is a significant regulator of parathyroid cell proliferation through rpS6.
Keywords:chronic renal failure  mineral metabolism  parathyroid hormone  calcium-sensing receptor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号