首页 | 本学科首页   官方微博 | 高级检索  
检索        


Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility
Authors:de Lima Ingrid Russoni  Alves Gutemberg Gomes  Soriano Carlos Alberto  Campaneli Ana Paula  Gasparoto Thais Helena  Ramos Erivan Schnaider  de Sena Lídia Ágata  Rossi Alexandre Malta  Granjeiro José Mauro
Institution:Clinical Research Unit, Ant?nio Pedro Hospital, Fluminense Federal University, Niterói, Brazil.
Abstract:Hydroxyapatite (HA), a stable and biocompatible material for bone tissue therapy, may present a variable stoichiometry and accept a large number of cationic substitutions. Such substitutions may modify the chemical activity of HA surface, with possible impact on biocompatibility. In this work, we assessed the effects of calcium substitution with diverse divalent cations (Pb(2+), Sr(2+), Co(2+), Zn(2+), Fe(2+), Cu(2+), or Mg(2+)) on the biological behavior of HA. Physicochemical analyses revealed that apatite characteristics related to crystallinity and calcium dissolution/uptake rates are very sensitive to the nature of cationic substitution. Cytocompatibility was evaluated by mitochondrial activity, membrane integrity, cell density, proapoptotic potential, and adhesion tests. With the exception of Zn-HA, all the substituted HAs induced some level of apoptosis. The highest apoptosis levels were observed for Mg-HA and Co-HA. Cu-HA was the only material to impair simultaneously mitochondrial activity, membrane integrity, and cell density. The highest relative cell densities after exposure to the modified HAs were observed for Mg-HA and Zn-HA, while Co-HA significantly improved cell adhesion onto HA surface. These results show that changes on surface dissolution caused by cationic substitution, as well as the increase of metal species released to biological media, were the main responsible factors related to alterations on HA biocompatibility.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号