首页 | 本学科首页   官方微博 | 高级检索  
     


Combination nonviral interleukin 2 gene therapy and external-beam radiation therapy for head and neck cancer
Authors:Bray David  Yu Shu-Zhen  Koprowski Hilary  Rhee Juong  Kumar Sanjeev  Pericle Federica  Suntharalingam Mohan  Van Echo David A  Li Daqing  O'Malley Bert W
Affiliation:Department of Otolaryngology--Head and Neck Surgery, The Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA.
Abstract:OBJECTIVES: To demonstrate that the combination of nonviral murine interleukin 2 (mIL-2) gene therapy and external-beam radiation therapy (XRT) have an enhanced therapeutic effect for the treatment of head and neck squamous cell carcinoma (HNSCC) in an orthotopic murine model and to elucidate the mechanism of action. METHODS: Randomized, controlled studies in the murine orthotopic model of HNSCC. Squamous cell carcinoma VII cells were injected into the floor of the mouth to establish tumors in immunocompetent mice. The intervention groups were treated with mIL-2, radiation therapy, empty plasmid, no treatment, combination mIL-2/XRT, and combination empty plasmid/XRT. Nonviral mIL-2 gene transfer was performed on days 5 and 9. The XRT was administered to the assigned groups 24 hours after first mIL-2 delivery. The mice were killed on day 13. Tumors and local lymph nodes were harvested and evaluated. Primary and secondary cytokine expression, cytotoxic T-lymphocyte activity, and apoptosis were assayed. RESULTS: The combination mIL-2/XRT demonstrated a significant increase in antitumor effects compared with single therapy or controls. Increased expression levels of primary and secondary cytokines were found in the group treated with mIL-2, and this effect was preserved when mIL-2 treatment was combined with XRT. Combination therapy significantly increased apoptosis compared with monotherapy. CONCLUSIONS: The present study demonstrates that combination mIL-2/XRT generates potent antitumor immune responses and significantly increases apoptosis in an orthotopic murine model of HNSCC. Further optimization of this strategy is warranted as well as consideration for human clinical trials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号