首页 | 本学科首页   官方微博 | 高级检索  
检索        


Brief treatment of sensory ganglion neurons with GM1 ganglioside enhances the efficacy of opioid excitatory effects on the action potential
Authors:Ke-Fei Shen  Stanley M Crain  Robert W Ledeen  
Institution:Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461.
Abstract:In previous studies, we showed that low (nM) concentrations of opioid prolong the action potential duration (APD) of many mouse dorsal root ganglion (DRG) neurons via Gs-linked excitatory opioid receptors, whereas micromolar opioid levels shorten the APD via Gi/Go-linked inhibitory receptors. In addition, cholera toxin-B subunit (CTX-B) selectively blocks opioid- but not forskolin-induced prolongation of the APD in DRG neurons. Since CTX-B binds with selective high affinity to GM1 ganglioside located on the cell surface, the results suggest that GM1 plays an essential role in regulating excitatory opioid receptor functions. This hypothesis was tested by treating DRG neurons in mouse DRG-cord explants with exogenous gangliosides and determining whether the efficacy of opioid agonists in prolonging the APD is enhanced. The threshold concentration of the opioids, dynorphin(1-13) and morphine required to prolong the APD in many DRG neurons was markedly decreased from nM to fM levels after bath exposure to 10 nM to 1 microM GM1 ganglioside for less than 5 min. In contrast, GM2 and GM3 gangliosides and asialo-GM1 ganglioside were ineffective, even when DRG neurons were exposed to high concentrations (1-10 microM) for periods greater than 1 h. Although GD1a, GD1b and GQ1b gangliosides appeared to be as effective as GM1 when tested at microM concentrations for 15 min, tests at lower concentrations, shorter periods, and/or at lower temperature (24 degrees vs 34 degrees C), showed that they were significantly less effective than GM1.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:Excitatory opioid receptor  Dorsal root ganglion neuron  GM1  gangliosides  Ganglioside  Action potential prolongation  Modulation of Gs-coupled opioid receptor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号