首页 | 本学科首页   官方微博 | 高级检索  
     


Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells
Authors:Birukov Konstantin G  Birukova Anna A  Dudek Steven M  Verin Alexander D  Crow Michael T  Zhan Xi  DePaola Natacha  Garcia Joe G N
Affiliation:Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA. kbirukov@jhmi.edu
Abstract:Hemodynamic forces in the form of shear stress (SS) and mechanical strain imposed by circulating blood are recognized factors involved in the control of systemic endothelial cell (EC) cytoskeletal structure and function. However, the effects of acute SS on pulmonary endothelium have not been precisely characterized, nor the mechanism of rapid SS-induced EC cytoskeletal rearrangement understood. We exposed bovine and human pulmonary EC monolayers to laminar SS (10 dynes/cm2) in a parallel plate flow chamber and observed increased actin stress fiber formation 15 min after application of flow. Acute SS-induced pronounced cortical cytoskeletal rearrangement characterized by myosin light chain kinase (MLCK)- and Rho-associated kinase (RhoK)-dependent accumulation of diphosphorylated regulatory myosin light chains (MLC) in the cortical actin ring, junctional protein tyrosine phosphorylation, and transient peripheral translocation of cortactin, an actin-binding protein involved in the regulation of actin polymerization. SS-induced cortactin translocation was independent of Erk-1,2 MAP kinase, p60(Src), MLCK, or RhoK activities, and unaffected by overexpression of a cortactin mutant lacking four major p60(Src) phosphorylation sites. However, both SS-induced transient cortactin translocation and cytoskeletal reorientation in response to sustained (24 h) SS was abolished in cells overexpressing either dominant negative Rac 1 or a dominant negative construct of its downstream target, p21-activated kinase (PAK)-1. Our results suggest a potential role for cortactin in the SS-induced EC cortical cytoskeletal remodeling and demonstrate a novel mechanism of Rac GTPase-dependent regulation of the pulmonary endothelial cytoskeleton by SS.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号