首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers
Authors:Capozzo Alejandra V E  Cuberos Lilian  Levine Myron M  Pasetti Marcela F
Institution:Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, 21201, USA.
Abstract:The development of effective vaccines for neonates and very young infants has been impaired by their weak, short-lived, and Th-2 biased responses and by maternal antibodies that interfere with vaccine take. We investigated the ability of Salmonella enterica serovars Typhi and Typhimurium to mucosally deliver tetanus toxin fragment C (Frag C) as a model antigen in neonatal mice. We hypothesize that Salmonella, by stimulating innate immunity (contributing to adjuvant effects) and inducing Th-1 cytokines, can enhance neonatal dendritic cell maturation and T-cell activation and thereby prime humoral and cell-mediated immunity. We demonstrate for the first time that intranasal immunization of newborn mice with 10(9) CFU of S. enterica serovar Typhi CVD 908-htrA and S. enterica serovar Typhimurium SL3261 carrying plasmid pTETlpp on days 7 and 22 after birth elicits high titers of Frag C antibodies, previously found to protect against tetanus toxin challenge and similar to those observed in adult mice. Salmonella live vectors colonized and persisted primarily in nasal tissue. Mice vaccinated as neonates induced Frag C-specific mucosal and systemic immunoglobulin A (IgA)- and IgG-secreting cells, T-cell proliferative responses, and gamma interferon secretion. A mixed Th1- and Th2-type response to Frag C was established 1 week after the boost and was maintained thereafter. S. enterica serovar Typhi carrying pTETlpp induced Frag C-specific antibodies and cell-mediated immunity in the presence of high levels of maternal antibodies. This is the first report that demonstrates the effectiveness of Salmonella live vector vaccines in early life.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号