首页 | 本学科首页   官方微博 | 高级检索  
检索        


Testosterone manipulation protects motoneurons from dendritic atrophy after contralateral motoneuron depletion
Authors:Fargo Keith Nolan  Sengelaub Dale Robert
Institution:Department of Psychology and Program in Neural Science, Indiana University, Bloomington, Indiana 47405, USA.
Abstract:Dendritic morphology is reactive to many kinds of injuries, including axotomy and deafferentation. In this study, we examined the response of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), an androgen-dependent population of motoneurons in the lumbar spinal cord of the rat, to partial motoneuron depletion. We depleted SNB motoneurons on one side only of the spinal cord by unilateral intramuscular injection of a retrogradely transported form of saporin, and examined the morphology of contralateral SNB motoneurons. Motoneuron morphology was assessed in normal control males, gonadally intact saporin-treated males, and saporin-treated males who had been castrated 6 weeks previously and given testosterone replacement beginning at the time of saporin injection. Untreated castrated males served as an additional control group. Four weeks after saporin treatment, SNB motoneurons contralateral to the saporin injection were retrogradely labeled with horseradish peroxidase conjugated to the cholera toxin B subunit and reconstructed in three dimensions. In gonadally intact males, unilateral motoneuron depletion caused regressive changes in contralateral SNB motoneurons: Soma size and dendritic length were both decreased. However, testosterone manipulation (i.e., castration followed by testosterone replacement) completely prevented the dendritic retraction. These data suggest a therapeutic role for testosterone in preventing, or accelerating recovery from, dendritic atrophy induced by motoneuron injury.
Keywords:steroids  morphology  saporin  spinal cord injury
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号