首页 | 本学科首页   官方微博 | 高级检索  
检索        


Ultraviolet B light-induced apoptosis in human keratinocytes enriched with epidermal stem cells and normal keratinocytes
Authors:Mei Xue-ling  Lian Shi
Institution:Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, China.
Abstract:Background The stem-cell compartment is the primary target for the accumulation of oncogenic mutations.Overexposure to solar ultraviolet radiation is responsible for the development and progression of >90% of skin cancers.Ultraviolet B (UVB) light-induced keratinocyte apoptosis is a strong preventive mechanism against carcinogenesis. The aim of this study was to isolate keratinocytes enriched with putative human epidermal stem cells and to investigate their apoptotic induction by UVB.Methods Keratinocytes enriched with putative human epidermal stem cells were isolated by adherence to collagen Ⅳ and the expressions of β1-integrin and p63 were investigated. Keratinocytes enriched with putative human epidermal stem cells and normal keratinocytes were irradiated with UVB at 0-80 mJ/cm2. The apoptotic response was investigated with phase-contrast microscopy, Hoechst 33342 staining, flow cytometry of annexin V/PI, and procaspase-3 Western blotting.Results Keratinocyte enriched with stem cells expressed high levels of p63 protein and β1-integrin and low level of pan-keratin (C11). In comparison to non-irradiated cells, significant apoptosis of keratinocyte enriched with stem cells was found with 40 and 80 mJ/cm2 UVB. However, significant apoptosis of normal keratinocytes was only found for 80 mJ/cm2 UVB.Conclusions Human epidermal stem cells can undergo apoptosis in response to UVB radiation and are more susceptible than other keratinocytes. The method could be used in vitro studies of human epidermal stem cells.
Keywords:ultraviolet light  stem cell  skin  apoptosis  skin cancer
本文献已被 维普 万方数据 PubMed 等数据库收录!
点击此处可从《中华医学杂志(英文版)》浏览原始摘要信息
点击此处可从《中华医学杂志(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号