首页 | 本学科首页   官方微博 | 高级检索  
     


Combined Risk Allele Score of Eight Type 2 Diabetes Genes Is Associated With Reduced First-Phase Glucose-Stimulated Insulin Secretion During Hyperglycemic Clamps
Authors:Leen M. ‘t Hart  Annemarie M. Simonis-Bik  Giel Nijpels  Timon W. van Haeften  Silke A. Sch?fer  Jeanine J. Houwing-Duistermaat  Dorret I. Boomsma  Marlous J. Groenewoud  Erwin Reiling  Els C. van Hove  Michaela Diamant  Mark H.H. Kramer  Robert J. Heine  J. Antonie Maassen  Kerstin Kirchhoff  Fausto Machicao  Hans-Ulrich H?ring  P. Eline Slagboom  Gonneke Willemsen  Elisabeth M. Eekhoff  Eco J. de Geus  Jacqueline M. Dekker  Andreas Fritsche
Abstract:

OBJECTIVE

At least 20 type 2 diabetes loci have now been identified, and several of these are associated with altered β-cell function. In this study, we have investigated the combined effects of eight known β-cell loci on insulin secretion stimulated by three different secretagogues during hyperglycemic clamps.

RESEARCH DESIGN AND METHODS

A total of 447 subjects originating from four independent studies in the Netherlands and Germany (256 with normal glucose tolerance [NGT]/191 with impaired glucose tolerance [IGT]) underwent a hyperglycemic clamp. A subset had an extended clamp with additional glucagon-like peptide (GLP)-1 and arginine (n = 224). We next genotyped single nucleotide polymorphisms in TCF7L2, KCNJ11, CDKAL1, IGF2BP2, HHEX/IDE, CDKN2A/B, SLC30A8, and MTNR1B and calculated a risk allele score by risk allele counting.

RESULTS

The risk allele score was associated with lower first-phase glucose-stimulated insulin secretion (GSIS) (P = 7.1 × 10−6). The effect size was equal in subjects with NGT and IGT. We also noted an inverse correlation with the disposition index (P = 1.6 × 10−3). When we stratified the study population according to the number of risk alleles into three groups, those with a medium- or high-risk allele score had 9 and 23% lower first-phase GSIS. Second-phase GSIS, insulin sensitivity index and GLP-1, or arginine-stimulated insulin release were not significantly different.

CONCLUSIONS

A combined risk allele score for eight known β-cell genes is associated with the rapid first-phase GSIS and the disposition index. The slower second-phase GSIS, GLP-1, and arginine-stimulated insulin secretion are not associated, suggesting that especially processes involved in rapid granule recruitment and exocytosis are affected in the majority of risk loci.Type 2 diabetes is a polygenic disease in which the contribution of a number of detrimental gene variants in combination with environmental factors is thought to be necessary for the development of disease. In the past 2 years, results of several genome-wide association studies (GWASs) have been published (15), leading to a rapidly increasing number of detrimental type 2 diabetes susceptibility loci. More recently, it has indeed been shown that combining information from these diabetes loci into a risk allele score for all loci enhances diabetes risk (69). However, the predictive power of this combined risk allele score is yet insufficient to substitute or largely improve predictive power of known clinical risk factors (8,9). At present, little is known about how these gene variants in combination affect insulin secretion or insulin resistance. Based on recent data, mainly obtained from oral glucose tolerance tests (OGTTs), it was shown that a combined risk allele score from gene variants associated with type 2 diabetes is associated with insulin secretion and not with insulin sensitivity (1013). However, the OGTT is unable to distinguish between first- and second-phase insulin secretion. Furthermore, other secretagogues, like glucagon-like peptide (GLP)-1 and arginine, were not included in these studies.It is thought that the rapid recruitment and release of insulin granules from the readily releasable pool (RRP) is responsible for the first phase of insulin secretion, whereas the slower prolonged second phase involves recruitment to the membrane of more distant granules and de novo insulin synthesis. Although the exact pathways regulating both phases of glucose-stimulated insulin secretion (GSIS) are not completely resolved, it seems logical that they are at least in part different. This is further corroborated by our recent observation that the heritability for both phases of GSIS in twins is derived from partly nonoverlapping sets of genes (13a).Also, other nonglucose, stimuli-like incretins and amino acids can evoke an insulin response. Detailed phenotypic investigations of the response to these different stimuli may help to elucidate which processes are primarily affected by these loci. Previously, we have already shown that type 2 diabetes genes/loci can have different effects on first- and second-phase GSIS, as measured using hyperglycemic clamps. Also, based on the method of stimulation (i.e., oral versus intravenous), the outcome may differ substantially (1417), which provides further clues about the mechanism by which they affect insulin secretion.In this study, we genotyped gene variants in TCF7L2, KCNJ11, HHEX/IDE, CDKAL1, IGF2BP2, SLC30A8, CDKN2A/CDKN2B, and MTNR1B in 447 hyperglycemic clamped subjects (256 with normal glucose tolerance [NGT] and 191 with impaired glucose tolerance [IGT]) from four independent studies in the Netherlands and Germany. These eight loci were chosen based on the fact that they were reproducibly associated with β-cell function in various studies (rev. in 18,19). A combined risk allele score of all eight gene variants was calculated for each individual and tested against the various detailed measurements of β-cell function using the hyperglycemic clamp, generally considered to be the gold standard for quantification of first- and second-phase GSIS (20). Furthermore, we also assessed the combined effect of these eight genes on two other stimuli, GLP-1 and arginine-stimulated insulin secretion during hyperglycemia, in a subset of the study sample (n = 224). The latter test provides an estimation of the maximal insulin secretion capacity of a subject and may, according to animal studies, serve as a proxy for β-cell mass (21).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号