首页 | 本学科首页   官方微博 | 高级检索  
检索        


Lysozyme Release and Polymer Erosion Behavior of Injectable Implants Prepared from PLGA-PEG Block Copolymers and PLGA/PLGA-PEG Blends
Authors:Vesna Milacic  Steven P Schwendeman
Institution:1. Department of Pharmaceutical Sciences & the Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
Abstract:

Purpose

We evaluated the controlled release of lysozyme from various poly(D,L-lactic-co-glycolic acid) (PLGA) 50/50-polyethylene glycol (PEG) block copolymers relative to PLGA 50/50.

Methods

Lysozyme was encapsulated in cylindrical implants (0.8 mm diameter) by a solvent extrusion method. Release studies were conducted in phosphate buffered saline +0.02% Tween 80 (PBST) at 37°C. Lysozyme activity was measured by a fluorescence-based assay. Implant erosion was evaluated by kinetics of polymer molecular weight decline, water uptake, and mass loss.

Results

Lysozyme release from an AB15 di-block copolymer (15% 5 kDa PEG, PLGA 28 kDa) was very fast, whereas an AB10 di-block copolymer (with 10% 5 kDa PEG, PLGA 45 kDa) and ABA10 tri-block copolymer (with 10% 6 kDa PEG, PLGA 27 kDa) showed release profiles similar to PLGA. We achieved continuous lysozyme release for up to 4 weeks from AB10 and ABA10 by lysozyme co-encapsulation with the pore-forming and acid-neutralizing MgCO3, and from AB15 by co-encapsulation of MgCO3 and blending AB15 with PLGA. Lysozyme activity was mostly recovered during 4 weeks.

Conclusions

These block co-polymers may have utility either alone or as PLGA blends for the controlled release of proteins.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号