Abstract: | Two-dimensional HOHAHA and ROESY nuclear magnetic resonance techniques are used to obtain complete proton resonance assignments and to perform a conformational investigation of the neuropeptide neurotensin (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) in aqueous solution, methanol, and membrane-mimetic [deuterated sodium dodecylsulfate (SDS)] environments. Results suggest the absence of discernible elements of secondary structure in water and methanol. ROESY spectra confirm that Lys-Pro and Arg-Pro peptide bonds are all-trans, but that a significant population of cis Arg-Pro bonds arises in aqueous solution, which increases in the environment of SDS micelles. The conformational ensemble of the peptide is observed to narrow as it becomes bound through its cationic mid-region to SDS micelles, with the accompanying advent of local extended structure. The overall results indicate the inherent conformational flexibility of neurotensin, and emphasize the environmental dependence of conformation in peptides of medium length. |