首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of drug-transporter polymorphisms on the pharmacokinetics of fexofenadine enantiomers
Abstract:
  1. This study investigated an association of SLCO (encoding organic anion-transporting polypeptides (OATP), 1B1, 1B3, and 2B1), ABCB1 (P-glycoprotein (P-gp)), ABCC2 multidrug resistance protein 2 (MRP2), and ABCG2 (breast cancer resistance protein (BCRP)) polymorphisms with fexofenadine enantiomer pharmacokinetics after an oral dose of fexofenadine (60?mg) in 24 healthy subjects.

  2. The area under the plasma concentration-time curve (AUC0–24) of S-fexofenadine, but not R-fexofenadine, was significantly lower in subjects with a SLCO2B1*1/*1 allele as compared to subjects with a *3 allele (p?=?0.031).

  3. The AUC0–24 of S-fexofenadine was significantly lower in subjects with a wild-type combination of SLCO2B1*1/*1/ABCB1 1236CC, SLCO2B1*1/*1/ABCB1 3435CC, SLCO2B1*1/*1/ABCC2 -24CC, and ABCB1 1236CC/3435CC/ABCC2 -24CC compared to other polymorphic genotypes (p?=?0.010, 0.033, 0.022, and 0.036, respectively), whereas there was no difference in the AUC0–24 between the SLCO1B1/1B3 plus ABCB1 and ABCC2 groups.

  4. The pharmacokinetic properties of S-fexofenadine are affected by a single polymorphism of SLCO2B1 in combination with several polymorphisms of ABCB1 C1236T, C3435T, and ABCC2 C-24T. However, the ABCG2 polymorphism was not associated with fexofenadine pharmacokinetics.

  5. These findings suggest that a combination of multiple transporters, including OATP, P-gp, and MRP2, reacts strongly to fexofenadine exposure in the small intestine and liver, resulting in different dispositions of both enantiomers.

Keywords:Fexofenadine enantiomer  OATP2B1  P-glycoprotein  MRP2  polymorphism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号