首页 | 本学科首页   官方微博 | 高级检索  
检索        


Drought,agricultural adaptation,and sociopolitical collapse in the Maya Lowlands
Authors:Peter M J Douglas  Mark Pagani  Marcello A Canuto  Mark Brenner  David A Hodell  Timothy I Eglinton  Jason H Curtis
Abstract:Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800–950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period.The decline of the lowland Classic Maya during the Terminal Classic period (800–900/1000 C.E.) is a preeminent example of societal collapse (1), but its causes have been vigorously debated (25). Paleoclimate inferences from lake sediment and cave deposits (611) indicate that the Terminal Classic was marked by a series of major droughts, suggesting that climate change destabilized lowland Maya society. Most evidence for drought during the Terminal Classic comes from the northern Maya Lowlands (Fig. 1) (68, 10), where societal disruption was less severe than in the southern Maya Lowlands (12, 13). There are fewer paleoclimate records from the southern Maya Lowlands, and they are equivocal with respect to the relative magnitude of drought impacts during the Terminal Classic (9, 11, 14). Further, the supposition that hydrological impacts were a primary cause for societal change is often challenged by archaeologists, who stress spatial variability in societal disruption across the region and the complexity of human responses to environmental change (2, 3, 12). The available paleoclimate data, however, do not constrain possible spatial variability in drought impacts (611). Arguments for drought as a principal cause for societal collapse have also not considered the potential resilience of the ancient Maya during earlier intervals of climate change (15).Open in a separate windowFig. 1.Map of the Maya Lowlands indicating the distribution of annual precipitation (64) and the location of paleoclimate archives discussed in the text. The locations of modern lake sediment and soil samples (Fig. 2) are indicated by diamonds.For this study, we analyzed coupled proxy records of climate change and ancient land use derived from stable hydrogen and carbon isotope analyses of higher-plant leaf wax lipids (long-chain n-alkanoic acids) in sediment cores from Lakes Chichancanab and Salpeten, in the northern and southern Maya Lowlands, respectively (Fig. 1). Hydrogen isotope compositions of n-alkanoic acids (δDwax) are primarily influenced by the isotopic composition of precipitation and isotopic fractionation associated with evapotranspiration (16). In the modern Maya Lowlands, δDwax is well correlated with precipitation amount and varies by 60‰ across an annual precipitation gradient of 2,500 mm (Fig. 2). This modern variability in δDwax is strongly influenced by soil water evaporation (17), and it is possible that changes in potential evapotranspiration could also impact paleo records. Accordingly, we interpret δDwax values as qualitative records of water availability influenced by both precipitation amount and potential evapotranspiration. These two effects are complementary, since less rainfall and increased evapotranspiration would lead to both increased δDwax values and reduced water resources, and vice versa.Open in a separate windowFig. 2.Scatter plot showing the negative relationship between annual precipitation and δDwax-corr measured in modern lake sediment and soil samples (Fig. 1). Results from Lake Chichancanab (CH) and Salpeten (SP) are indicated. The black line indicates a linear regression fit to these data, with regression statistics reported at the bottom of the plot. Large squares indicate mean values for each sampling region, with error bars indicating SEM in both δDwax-corr and annual precipitation. The black error bar indicates the 1σ error for δDwax-corr values (SI Text). Original δDwax data from ref. 17. VSMOW, Vienna Standard Mean Ocean Water.Plant wax carbon isotope signatures (δ13Cwax) in sediments from low-elevation tropical environments, including the Maya lowlands, are primarily controlled by the relative abundance of C3 and C4 plants (1820). Ancient Maya land use was the dominant influence on the relative abundance of C3 and C4 plants during the late Holocene, because Maya farmers cleared C3 plant-dominated forests and promoted C4 grasses, in particular, maize (2124). Thus, we apply δ13Cwax records as an indicator of the relative abundance of C4 and C3 plants that reflects past land use change (SI Text). Physiological differences between plant groups also result in differing δDwax values between C3 trees and shrubs and C4 grasses (16), and we use δ13Cwax records to correct for the influence of vegetation change on δDwax values (25) (δDwax-corr, SI Text and Fig. S1).Plant waxes have been shown to have long residence times in soils in the Maya Lowlands (26). Therefore, age−depth models for our plant wax isotope records are based on compound-specific radiocarbon ages (Fig. 3), which align our δDwax records temporally with nearby hydroclimate records derived from other methodologies (26) (SI Text and Fig. S2). The mean 95% confidence range for the compound-specific age−depth models is 230 y at Lake Chichancanab and 250 y at Lake Salpeten. Given these age uncertainties, we focus our interpretation on centennial-scale variability (26). The temporal resolution of our plant wax isotope records is lower than speleothem-derived climate records (8, 9), but combining plant wax records from multiple sites allows comparisons of climate change and land use in the northern and southern Maya Lowlands, which would otherwise not be possible. In addition, plant wax isotope records extend to the Early Preclassic/Late Archaic period (1500–2000 B.C.E.), providing a longer perspective on climate change in the Maya Lowlands than most other regional records (6, 811).Open in a separate windowFig. 3.Plant wax (green; left) and terrigenous macrofossil (red; right) age−depth models for (A) Lake Chichancanab and (B) Lake Salpeten. The age probability density of individual radiocarbon analyses is shown. The black lines indicate the best age model based on the weighted mean of 1,000 age model iterations (62). Colored envelopes indicate 95% confidence intervals. Cal, calendar.
Keywords:Maya civilization  drought  societal collapse  climate adaptation  compound-specific isotope analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号