首页 | 本学科首页   官方微博 | 高级检索  
     

肺腺癌相关基因的生物信息学分析
引用本文:高强,钟英英,丁华杰,叶云. 肺腺癌相关基因的生物信息学分析[J]. 中国肿瘤生物治疗杂志, 2019, 26(2): 190-195
作者姓名:高强  钟英英  丁华杰  叶云
作者单位:广西科技大学生物与化学工程学院,广西柳州545006
基金项目:广西自然科学基金资助项目(No.2017GXNSFAA198325);广西高校中青年教师基础能力提升资助项目(No.2017KY353);2017 年度广西糖资源与加工重点实验室开放课题资助项目(No.2016TZYKF06,No.GXTZY201704);广西科技大学硕士生创新资助项目(No.GKYC201718)
摘    要:[摘要] 目的:通过生物信息学分析基因表达谱,获取肺腺癌相关基因及信号通路。方法:从GEO数据库下载GSE40791、GSE68571、GSE43458 和GSE18842 表达数据,将4 个微阵列数据集整合获得肺腺癌相关差异表达基因,利用STRING数据库为差异表达基因构建肺腺癌蛋白-蛋白互相作用网络,并挖掘肺腺癌网络中基因模块及关键基因。通过DAVID对各基因模块进行基因富集分析,发掘基因模块在肺腺癌细胞中所执行的调控功能及模块中关键基因与患者的预后关系。结果:初步筛查获得肺腺癌相关37 个上调基因、120 个下调基因,并成功构建蛋白-蛋白相互作用网络,通过MCODE算法在蛋白-蛋白相互作用网络中构建基因模块以及计算关键基因(KIF14,SEPP1,SPP1,RBP4),最终获得的4 个模块分别参与细胞周期、血凝变化、细胞黏附和细胞代谢的调控。经验证4 个关键基因在肺腺癌和正常组织中有明显表达差异(P<0.05)。生存分析显示KIF14 的表达对肺腺癌的预后有显著影响(P<0.01),SEPP1、SPP1 对患者生存率有显著影响(P<0.05),RBP4 对患者的生存率影响无统计学意义(P>0.05)。结论:通过生物信息方法分析肺腺癌和癌旁正常组织的差异基因表达,最终筛选出3 个差异表达非常显著且对患者预后影响明显的基因,对肺腺癌的诊断和预后治疗提供了新思路,提高肺腺癌机制的研究效率。

关 键 词:肺腺癌;基因表达谱;差异基因
收稿时间:2018-12-17
修稿时间:2019-01-12

Bioinformatic analysis on related genes of lung adenocarcinoma
GAO Qiang,ZHONG Yingying,DING Huajie and YE Yun. Bioinformatic analysis on related genes of lung adenocarcinoma[J]. Chinses Journal of Cancer Biotherapy, 2019, 26(2): 190-195
Authors:GAO Qiang  ZHONG Yingying  DING Huajie  YE Yun
Affiliation:College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
Abstract:[Abstract] Objective: To indentify the candidate genes and signaling pathways in lung adenocarcinoma by analyzing gene profiles with bioinformatics. Methods: The expression profiles of GSE40791, GSE68571, GSE43458, and GSE18842 were down-loaded from the Gene Expression Omnibus (GEO) database. The four microarray datasets were integrated to obtain the differentially expressed genes related to lung adenocarcinoma. STRING database was used to construct the protein-protein interaction (PPI) network of differentially expressed genes, and to further explore the gene modules and the key genes. DAVID was used to perform the gene enrichment analysis of each gene module, and to explore the regulatory function of each gene module in adenocarcinoma cells, as well as the relationship between the key genes in the module and the prognosis of the patients. Results: Thirty-seven up-regulated genes and 120 down-regulated genes were obtained from the primary screen, and the protein-protein interaction(PPI) network was successfully constructed. According to MCODE algorithm, we constructed gene modules and calculated the core genes (KIF14, SEPP1, SPP1,RBP4) in the PPI network. Finally, four modules were proved to be involved in regulation of cell cycle, blood coagulation, cell adhesion and cell metabolism, and four key genes were proved to be differentially expressed between lung adenocarcinoma tissues and normal tissues (all P<0.05). Survival analysis showed that expressions of KIF14, SEPP1 and SPP1 had significant effect on the prognosis of lung adenocarcinoma (P<0.01 or P<0.05), while RBP4 exerted insignificant difference in the survival rate of lung adenocarcinoma patients (P>0.05). Conclusion: With bioinformatics, three differentially expressed genes between lung adenocarcinoma tissues and normal adjacent tissues were finally screened out and proved to be closely related to the prognosis of patients, which provided new thoughts in the diagnosis and prognosis prediction of lung adenocarcinoma and improved the study efficiency on the mechanism of lung adenocarcinoma.
Keywords:lung adenocarcinoma   gene expression profile   differentially expressed genes
点击此处可从《中国肿瘤生物治疗杂志》浏览原始摘要信息
点击此处可从《中国肿瘤生物治疗杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号