首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin,epigallocatechin 3-gallate and [6]-gingerol
Affiliation:1. College of Animal Science, South China Agricultural University, Guangzhou 510640, China;2. Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;3. Children''s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Rm 8070, Houston, TX 77030, USA;4. National Engineering Research Center For Breeding Swine Industry, Guangzhou, China
Abstract:Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2–5 folds from 24 to 96 h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans.
Keywords:Diabetes  Aldose reductase  Enzyme kinetics  Bioactive compounds  Functional foods
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号