Spinal administration of MK-801 and NBQX demonstrates NMDA-independent dorsal horn sensitization in incisional pain |
| |
Authors: | Zahn Peter K Pogatzki-Zahn Esther M Brennan Timothy J |
| |
Affiliation: | Department of Anesthesia, University of Muenster, Germany. |
| |
Abstract: | Surgery commonly causes pain and neural plasticity that are unique compared to other persistent pain problems. To more precisely study central sensitization and plasticity, we examined the role of ionotropic EAA receptors in dorsal horn neuron sensitization early after incision. Sensitization, in the form of increased background activity, increased mechanosensitivity or pinch receptive field expansion, was induced by plantar incision 1 h later in 30 neurons. (+)-5-Methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801) or 1 mM 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo[f]quinoxaline-7-sulfonamide (NBQX) was administered through a microdialysis fiber to block NMDA and nonNMDA EAA receptors, respectively. Dorsal horn neuron sensitization was reexamined 1 h later. Spinal administration of NBQX blocked AMPA-induced excitation but did not affect excitation by NMDA. NBQX decreased background activity in the neurons that developed sustained increased activity after incision. The median decrease caused by NBQX was from 2.3 to 0.0 imp/s. Spinal administration of 5 mM MK-801 blocked NMDA-induced excitation but did not affect excitation by AMPA. The median change (from 2.6 to 1.1 imp/s) in background activity increased by incision was not significantly affected by MK-801. The responses to mechanical stimuli were enhanced after incision in wide dynamic range (WDR) neurons. NBQX eliminated these responses but MK-801 had no effect. The pinch receptive field (RF) expansion into uninjured areas of the paw and hindquarters occurred after incision. Only 1 of 13 neurons exhibited RF expansion after spinal NBQX administration; 9 of 12 neurons had RF expansion remaining after MK-801. Thus, nonNMDA receptors are critical and NMDA-independent factors influence the increased responsiveness of dorsal horn neurons that occur early after incision. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|