Abstract: | Experiments were performed in 17 urethane-anesthetized rats to investigate electrophysiologically neurons in the subfornical organ (SFO), which send efferent axons directly to the region of the paraventricular nucleus of the hypothalamus (PVH), the supraoptic nucleus (SON) and the nucleus medianus (NM). Extracellular single unit recordings were made from spontaneously active and silent neurons in the region of SFO (n = 130) and the nucleus triangularis (NT; n = 20). Sixty-five units in SFO were antidromically activated by stimulation of either PVH, SON or NM with latencies corresponding to conduction velocities of 0.54 +/- 0.07 (n = 24), 0.44 +/- 0.05 (n = 17) and 0.23 +/- 0.02 (n = 24) m/s, respectively. Axons of SFO units projecting to NM conducted at significantly slower velocities than those to PVH and SON. An additional 11 units were antidromically activated in NT by stimulation of these forebrain structures. Sixty-seven units were found to respond orthodromically to stimulation of PVH, SON and NM: 58 in SFO and 9 in NT. Orthodromic responses were primarily excitation or inhibition. These data have demonstrated bidirectional pathways between SFO and forebrain structures which are likely involved in the dipsogenic and arterial pressure responses to activation of SFO by blood-borne angiotensin II. |